花楸花提取物绿色合成纳米银及其抗氧化、抗菌和光催化活性的测定

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
M. Kandiah, Kavishadhi N. Chandrasekaran
{"title":"花楸花提取物绿色合成纳米银及其抗氧化、抗菌和光催化活性的测定","authors":"M. Kandiah, Kavishadhi N. Chandrasekaran","doi":"10.1155/2021/5512786","DOIUrl":null,"url":null,"abstract":"The present study describes the antioxidant, antimicrobial, and photocatalytic activity of silver nanoparticles (AGNPs) synthesized using six varieties of Catharanthus roseus flower extracts for the first time. Initially, the synthesized AgNPs were visually confirmed by color change. Further, the formation, size, and shape of the synthesized AgNPs were characterized by UV-Vis spectroscopy and scanning electron microscopy (SEM). The SEM image of purple flower AgNPs and the calculated bandgap energies of the synthesized AgNPs showed that the synthesized AgNPs were in the range of 0–30 nm. Qualitative phytochemical analysis revealed the presence of the phytocompounds that were responsible for the capping, formation, bioreduction, and stabilization of AgNPs. The antioxidant ability of the AgNPs and their respective flower extracts were analyzed using TFC, TPC, TAC, DPPH, FRAP, and IC50 assays. The results of the antioxidant assays indicated that the AgNPs showed higher antioxidant activity compared to their respective flower extracts. The synthesized AgNPs showed significant antimicrobial activity against Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus assayed using the agar well diffusion method. Furthermore, the photocatalytic activity of the synthesized purple flower AgNPs at two different concentrations 5000 ppm and 333 ppm was analyzed by the removal of methyl orange dye from an aqueous solution under sunlight irradiation in the presence of NaBH4 catalyst. Results indicated that 333 ppm purple flower AgNPs exhibited an efficient photocatalytic activity in the degradation of methyl orange compared to 5000 ppm purple flower AgNPs in 20 minutes. Thus, the results obtained indicated that Catharanthus roseus is an ecofriendly source for the green synthesis of AgNPs which can be used as a novel antioxidant, antimicrobial, and photocatalytic agent; thereby, it can be used in a variety of applications to improve the quality of human life.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Green Synthesis of Silver Nanoparticles Using Catharanthus roseus Flower Extracts and the Determination of Their Antioxidant, Antimicrobial, and Photocatalytic Activity\",\"authors\":\"M. Kandiah, Kavishadhi N. Chandrasekaran\",\"doi\":\"10.1155/2021/5512786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study describes the antioxidant, antimicrobial, and photocatalytic activity of silver nanoparticles (AGNPs) synthesized using six varieties of Catharanthus roseus flower extracts for the first time. Initially, the synthesized AgNPs were visually confirmed by color change. Further, the formation, size, and shape of the synthesized AgNPs were characterized by UV-Vis spectroscopy and scanning electron microscopy (SEM). The SEM image of purple flower AgNPs and the calculated bandgap energies of the synthesized AgNPs showed that the synthesized AgNPs were in the range of 0–30 nm. Qualitative phytochemical analysis revealed the presence of the phytocompounds that were responsible for the capping, formation, bioreduction, and stabilization of AgNPs. The antioxidant ability of the AgNPs and their respective flower extracts were analyzed using TFC, TPC, TAC, DPPH, FRAP, and IC50 assays. The results of the antioxidant assays indicated that the AgNPs showed higher antioxidant activity compared to their respective flower extracts. The synthesized AgNPs showed significant antimicrobial activity against Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus assayed using the agar well diffusion method. Furthermore, the photocatalytic activity of the synthesized purple flower AgNPs at two different concentrations 5000 ppm and 333 ppm was analyzed by the removal of methyl orange dye from an aqueous solution under sunlight irradiation in the presence of NaBH4 catalyst. Results indicated that 333 ppm purple flower AgNPs exhibited an efficient photocatalytic activity in the degradation of methyl orange compared to 5000 ppm purple flower AgNPs in 20 minutes. Thus, the results obtained indicated that Catharanthus roseus is an ecofriendly source for the green synthesis of AgNPs which can be used as a novel antioxidant, antimicrobial, and photocatalytic agent; thereby, it can be used in a variety of applications to improve the quality of human life.\",\"PeriodicalId\":16378,\"journal\":{\"name\":\"Journal of Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5512786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5512786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 21

摘要

本文首次研究了以6种玫瑰花提取物为原料合成的银纳米颗粒(AGNPs)的抗氧化、抗菌和光催化活性。最初,合成的AgNPs通过颜色变化在视觉上得到证实。利用紫外可见光谱(UV-Vis)和扫描电镜(SEM)对合成的AgNPs的形成、大小和形状进行了表征。紫色花AgNPs的SEM图像和计算的AgNPs带隙能表明,合成的AgNPs在0 ~ 30 nm范围内。定性的植物化学分析揭示了与AgNPs盖顶、形成、生物还原和稳定有关的植物化合物的存在。采用TFC、TPC、TAC、DPPH、FRAP和IC50检测AgNPs及其花提取物的抗氧化能力。抗氧化实验结果表明,AgNPs具有较强的抗氧化活性。与琼脂孔扩散法检测的革兰氏阳性金黄色葡萄球菌相比,合成的AgNPs对革兰氏阴性大肠杆菌具有显著的抑菌活性。此外,在NaBH4催化剂的作用下,通过甲基橙染料的脱除,分析了合成的紫花AgNPs在5000 ppm和333 ppm两种不同浓度下的光催化活性。结果表明,333 ppm紫花AgNPs与5000 ppm紫花AgNPs相比,在20分钟内具有较好的降解甲基橙的光催化活性。结果表明,花楸属植物是一种绿色合成AgNPs的环保原料,可作为一种新型的抗氧化、抗菌和光催化试剂;因此,它可以用于各种应用,以提高人类的生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Synthesis of Silver Nanoparticles Using Catharanthus roseus Flower Extracts and the Determination of Their Antioxidant, Antimicrobial, and Photocatalytic Activity
The present study describes the antioxidant, antimicrobial, and photocatalytic activity of silver nanoparticles (AGNPs) synthesized using six varieties of Catharanthus roseus flower extracts for the first time. Initially, the synthesized AgNPs were visually confirmed by color change. Further, the formation, size, and shape of the synthesized AgNPs were characterized by UV-Vis spectroscopy and scanning electron microscopy (SEM). The SEM image of purple flower AgNPs and the calculated bandgap energies of the synthesized AgNPs showed that the synthesized AgNPs were in the range of 0–30 nm. Qualitative phytochemical analysis revealed the presence of the phytocompounds that were responsible for the capping, formation, bioreduction, and stabilization of AgNPs. The antioxidant ability of the AgNPs and their respective flower extracts were analyzed using TFC, TPC, TAC, DPPH, FRAP, and IC50 assays. The results of the antioxidant assays indicated that the AgNPs showed higher antioxidant activity compared to their respective flower extracts. The synthesized AgNPs showed significant antimicrobial activity against Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus assayed using the agar well diffusion method. Furthermore, the photocatalytic activity of the synthesized purple flower AgNPs at two different concentrations 5000 ppm and 333 ppm was analyzed by the removal of methyl orange dye from an aqueous solution under sunlight irradiation in the presence of NaBH4 catalyst. Results indicated that 333 ppm purple flower AgNPs exhibited an efficient photocatalytic activity in the degradation of methyl orange compared to 5000 ppm purple flower AgNPs in 20 minutes. Thus, the results obtained indicated that Catharanthus roseus is an ecofriendly source for the green synthesis of AgNPs which can be used as a novel antioxidant, antimicrobial, and photocatalytic agent; thereby, it can be used in a variety of applications to improve the quality of human life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信