超嗜热厌氧共消化浓缩废活性污泥、城市生活垃圾有机组分和油脂的沼气回收

Rania Mona Zeid Alqaralleh, K. Kennedy, R. Delatolla
{"title":"超嗜热厌氧共消化浓缩废活性污泥、城市生活垃圾有机组分和油脂的沼气回收","authors":"Rania Mona Zeid Alqaralleh, K. Kennedy, R. Delatolla","doi":"10.4172/2155-6199.1000408","DOIUrl":null,"url":null,"abstract":"The use of organic fraction of municipal solid waste and Fat Oil and Grease (FOG) as co-substrates for thickened waste activated sludge anaerobic digestion has the potential to improve the biodegradation process and significantly enhance biogas production and methane yields. This will not only help convert these potential waste streams from landfills increasing the longevity of existing landfills, but also provide a sustainable waste to energy waste management method. In this study the anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge (50:50, w/w based on total volatile solids) was investigated using anaerobic digestion thermophilic and hyper-thermophilic biochemical methane potential (BMP) assays. The hyper-thermophilic BMP assays outperformed the thermophilic BMP assays by providing faster biogas production rates, higher cumulative biogas productions and methane yields. Additionally, 10, 20 and 30% FOG (based on total volatile solids) were added to the co-digestion mixtures in order to boost the biogas production and methane yield in three hyperthermophilic assays. 30% FOG in the co-digestion mixture enhanced the biogas methane content for sample TWAS:OFMSW:30%FOG(H) to 66.4% compared to 60.1% for the control sample TWAS(T), and accordingly improved the methane yield to be 84.4% higher than the methane yield of the control.","PeriodicalId":15262,"journal":{"name":"Journal of Bioremediation and Biodegradation","volume":"98 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Biogas Recovery from Hyper-Thermophilic Anaerobic Co-Digestion of Thickened Waste Activated Sludge, Organic Fraction of Municipal Solid Waste and Fat, Oil and Grease\",\"authors\":\"Rania Mona Zeid Alqaralleh, K. Kennedy, R. Delatolla\",\"doi\":\"10.4172/2155-6199.1000408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of organic fraction of municipal solid waste and Fat Oil and Grease (FOG) as co-substrates for thickened waste activated sludge anaerobic digestion has the potential to improve the biodegradation process and significantly enhance biogas production and methane yields. This will not only help convert these potential waste streams from landfills increasing the longevity of existing landfills, but also provide a sustainable waste to energy waste management method. In this study the anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge (50:50, w/w based on total volatile solids) was investigated using anaerobic digestion thermophilic and hyper-thermophilic biochemical methane potential (BMP) assays. The hyper-thermophilic BMP assays outperformed the thermophilic BMP assays by providing faster biogas production rates, higher cumulative biogas productions and methane yields. Additionally, 10, 20 and 30% FOG (based on total volatile solids) were added to the co-digestion mixtures in order to boost the biogas production and methane yield in three hyperthermophilic assays. 30% FOG in the co-digestion mixture enhanced the biogas methane content for sample TWAS:OFMSW:30%FOG(H) to 66.4% compared to 60.1% for the control sample TWAS(T), and accordingly improved the methane yield to be 84.4% higher than the methane yield of the control.\",\"PeriodicalId\":15262,\"journal\":{\"name\":\"Journal of Bioremediation and Biodegradation\",\"volume\":\"98 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioremediation and Biodegradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6199.1000408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioremediation and Biodegradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6199.1000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用城市生活垃圾的有机组分和油脂(FOG)作为增稠型垃圾活性污泥厌氧消化的共底物,有可能改善生物降解过程,显著提高沼气产量和甲烷产量。这不仅有助于从堆填区转化这些潜在的废物流,增加现有堆填区的寿命,而且还提供了一种可持续的废物转化为能源的废物管理方法。在本研究中,采用厌氧消化嗜热和超嗜热生化甲烷势(BMP)测定方法,研究了城市生活垃圾有机组分与增稠的活性污泥(50:50,w/w)的厌氧共消化。通过提供更快的沼气产量、更高的累积沼气产量和甲烷产量,超嗜热BMP检测优于嗜热BMP检测。此外,在共消化混合物中添加10%、20%和30%的FOG(基于总挥发性固体),以便在三次超嗜热试验中提高沼气产量和甲烷产量。在共消化混合物中添加30%的FOG,使样品TWAS:OFMSW:30%FOG(H)的沼气甲烷含量从对照样品TWAS(T)的60.1%提高到66.4%,相应的甲烷产量也比对照样品TWAS(T)提高84.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biogas Recovery from Hyper-Thermophilic Anaerobic Co-Digestion of Thickened Waste Activated Sludge, Organic Fraction of Municipal Solid Waste and Fat, Oil and Grease
The use of organic fraction of municipal solid waste and Fat Oil and Grease (FOG) as co-substrates for thickened waste activated sludge anaerobic digestion has the potential to improve the biodegradation process and significantly enhance biogas production and methane yields. This will not only help convert these potential waste streams from landfills increasing the longevity of existing landfills, but also provide a sustainable waste to energy waste management method. In this study the anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge (50:50, w/w based on total volatile solids) was investigated using anaerobic digestion thermophilic and hyper-thermophilic biochemical methane potential (BMP) assays. The hyper-thermophilic BMP assays outperformed the thermophilic BMP assays by providing faster biogas production rates, higher cumulative biogas productions and methane yields. Additionally, 10, 20 and 30% FOG (based on total volatile solids) were added to the co-digestion mixtures in order to boost the biogas production and methane yield in three hyperthermophilic assays. 30% FOG in the co-digestion mixture enhanced the biogas methane content for sample TWAS:OFMSW:30%FOG(H) to 66.4% compared to 60.1% for the control sample TWAS(T), and accordingly improved the methane yield to be 84.4% higher than the methane yield of the control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信