低回火温度碳钢的真空电弧氮化

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Stolbovyi, A. Andreev, I. Serdiuk, I. Kolodii, A. Shepelev
{"title":"低回火温度碳钢的真空电弧氮化","authors":"V. Stolbovyi, A. Andreev, I. Serdiuk, I. Kolodii, A. Shepelev","doi":"10.11648/J.AM.20211004.11","DOIUrl":null,"url":null,"abstract":"Studies have been made into a new possibility of modifying the surface of steels having a low tempering temperature by nitriding them in a vacuum-arc gas discharge followed by heat treatment (heating, quenching and tempering). Generally, nitriding of hardened steels takes place at a temperature of about 500°C, and thus this process appears impossible for steels with tempering temperatures of the order of 200... 300°C. It is demonstrated here that a single ion-plasma nitriding of high-carbon steel with the composition of 0.9% C, 1% Cr, 1% Si, followed by heat treatment, provides the nitrided layer of 2.5 mm in depth, with the hardness between 9 and 11 GPa. Within the range of X-rays penetration, the nitride-hardened layer of the surface is defined as the nitrogen austenite-alpha ferrite mixture, which shows high wear resistance and impact toughness. This layer contributes, in particular, to three-/four-foldin crease in the operational life of cutting punches (made of this steel and used in the manufacture of metal sieves) as opposed to the punches that have undergone conventional heat treatment. After repeated nitriding of the same steel and its subsequent heat treatment according to standard technologies the nitrided layer thickness becomes nearly twice as large, and that allows for multiple regrinding of steel tools. A computer analysis of related publications entered into three International Databases (INIS, MSCI, SCOPUS) has been carried out.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacuum-arc Nitriding of Carbon Steels Having Low Tempering Temperature\",\"authors\":\"V. Stolbovyi, A. Andreev, I. Serdiuk, I. Kolodii, A. Shepelev\",\"doi\":\"10.11648/J.AM.20211004.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies have been made into a new possibility of modifying the surface of steels having a low tempering temperature by nitriding them in a vacuum-arc gas discharge followed by heat treatment (heating, quenching and tempering). Generally, nitriding of hardened steels takes place at a temperature of about 500°C, and thus this process appears impossible for steels with tempering temperatures of the order of 200... 300°C. It is demonstrated here that a single ion-plasma nitriding of high-carbon steel with the composition of 0.9% C, 1% Cr, 1% Si, followed by heat treatment, provides the nitrided layer of 2.5 mm in depth, with the hardness between 9 and 11 GPa. Within the range of X-rays penetration, the nitride-hardened layer of the surface is defined as the nitrogen austenite-alpha ferrite mixture, which shows high wear resistance and impact toughness. This layer contributes, in particular, to three-/four-foldin crease in the operational life of cutting punches (made of this steel and used in the manufacture of metal sieves) as opposed to the punches that have undergone conventional heat treatment. After repeated nitriding of the same steel and its subsequent heat treatment according to standard technologies the nitrided layer thickness becomes nearly twice as large, and that allows for multiple regrinding of steel tools. A computer analysis of related publications entered into three International Databases (INIS, MSCI, SCOPUS) has been carried out.\",\"PeriodicalId\":7327,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AM.20211004.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AM.20211004.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种新的可能性,即在真空电弧气体放电中氮化,然后进行热处理(加热、淬火和回火),以改性具有低回火温度的钢表面。一般来说,淬硬钢的氮化发生在500℃左右,因此对于回火温度为200℃的钢来说,这一过程似乎是不可能的。300°C。结果表明,对成分为0.9% C、1% Cr、1% Si的高碳钢进行单次离子等离子体渗氮,再进行热处理,可获得深度为2.5 mm、硬度在9 ~ 11gpa之间的氮化层。在x射线穿透范围内,表面的氮化硬化层定义为氮奥氏体- α铁素体混合物,具有较高的耐磨性和冲击韧性。与经过传统热处理的冲头相比,这一层特别有助于将切割冲头(由这种钢制成并用于制造金属筛子)的使用寿命延长三/四倍。同一种钢经过多次氮化处理和随后按照标准技术进行热处理后,氮化层厚度几乎增加了一倍,这就允许对钢工具进行多次再磨削。已对输入三个国际数据库(国际数据库、MSCI、SCOPUS)的有关出版物进行了计算机分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacuum-arc Nitriding of Carbon Steels Having Low Tempering Temperature
Studies have been made into a new possibility of modifying the surface of steels having a low tempering temperature by nitriding them in a vacuum-arc gas discharge followed by heat treatment (heating, quenching and tempering). Generally, nitriding of hardened steels takes place at a temperature of about 500°C, and thus this process appears impossible for steels with tempering temperatures of the order of 200... 300°C. It is demonstrated here that a single ion-plasma nitriding of high-carbon steel with the composition of 0.9% C, 1% Cr, 1% Si, followed by heat treatment, provides the nitrided layer of 2.5 mm in depth, with the hardness between 9 and 11 GPa. Within the range of X-rays penetration, the nitride-hardened layer of the surface is defined as the nitrogen austenite-alpha ferrite mixture, which shows high wear resistance and impact toughness. This layer contributes, in particular, to three-/four-foldin crease in the operational life of cutting punches (made of this steel and used in the manufacture of metal sieves) as opposed to the punches that have undergone conventional heat treatment. After repeated nitriding of the same steel and its subsequent heat treatment according to standard technologies the nitrided layer thickness becomes nearly twice as large, and that allows for multiple regrinding of steel tools. A computer analysis of related publications entered into three International Databases (INIS, MSCI, SCOPUS) has been carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信