芯片解析揭示了对抗血管紧张素转换酶2 (ACE-2)受体的潜在植物化学物质,以对抗2019冠状病毒病(COVID-19)

Hina Khalid, Sana Khalid, M. Sufyan, U. Ashfaq
{"title":"芯片解析揭示了对抗血管紧张素转换酶2 (ACE-2)受体的潜在植物化学物质,以对抗2019冠状病毒病(COVID-19)","authors":"Hina Khalid, Sana Khalid, M. Sufyan, U. Ashfaq","doi":"10.1515/znc-2021-0325","DOIUrl":null,"url":null,"abstract":"Abstract The coronavirus (SARS-CoV-2) pandemic is rapidly advancing and spreading worldwide, which poses an urgent need to develop anti-SARS-CoV-2 agents. A human receptor, namely, angiotensin-converting enzyme 2 (ACE-2), supports the SARS-CoV-2 entry, therefore, serves as a target for intervention via drug. In the current study, bioinformatic approaches were employed to screen potent bioactive compounds that might be ACE-2 receptor inhibitors. The employment of a docking study using ACE receptor protein with a ready-to-dock database of phytochemicals via MOE software revealed five compounds as potent molecules. Among them, astragaloside exhibited the highest binding affinity −21.8 kcal/mol and stable interactions within the active site of the ACE-2 receptor. Similarly, the phytochemicals such as pterocaryanin B, isoastragaloside II, and astraisoflavan glucoside followed by oleuropein showed a stronger binding affinity. We hypothesize these compounds as potential lead candidates for the development of anti- COVID-19 target-specific drugs.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In-silico elucidation reveals potential phytochemicals against angiotensin-converting enzyme 2 (ACE-2) receptor to fight coronavirus disease 2019 (COVID-19)\",\"authors\":\"Hina Khalid, Sana Khalid, M. Sufyan, U. Ashfaq\",\"doi\":\"10.1515/znc-2021-0325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The coronavirus (SARS-CoV-2) pandemic is rapidly advancing and spreading worldwide, which poses an urgent need to develop anti-SARS-CoV-2 agents. A human receptor, namely, angiotensin-converting enzyme 2 (ACE-2), supports the SARS-CoV-2 entry, therefore, serves as a target for intervention via drug. In the current study, bioinformatic approaches were employed to screen potent bioactive compounds that might be ACE-2 receptor inhibitors. The employment of a docking study using ACE receptor protein with a ready-to-dock database of phytochemicals via MOE software revealed five compounds as potent molecules. Among them, astragaloside exhibited the highest binding affinity −21.8 kcal/mol and stable interactions within the active site of the ACE-2 receptor. Similarly, the phytochemicals such as pterocaryanin B, isoastragaloside II, and astraisoflavan glucoside followed by oleuropein showed a stronger binding affinity. We hypothesize these compounds as potential lead candidates for the development of anti- COVID-19 target-specific drugs.\",\"PeriodicalId\":23894,\"journal\":{\"name\":\"Zeitschrift für Naturforschung C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2021-0325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2021-0325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要新型冠状病毒(SARS-CoV-2)大流行在全球范围内快速推进和蔓延,迫切需要开发抗SARS-CoV-2药物。人类受体血管紧张素转换酶2 (ACE-2)支持SARS-CoV-2进入,因此可以作为药物干预的靶点。在目前的研究中,生物信息学方法被用于筛选可能是ACE-2受体抑制剂的有效生物活性化合物。通过MOE软件将ACE受体蛋白与植物化学物质数据库进行对接研究,发现五种化合物是有效分子。其中黄芪甲苷的结合亲和力最高,为21.8 kcal/mol,在ACE-2受体活性位点内相互作用稳定。同样,植物化学物质如紫花菜苷B、异黄芪甲苷II、黄芪黄素葡萄糖苷紧随橄榄苦苷之后,表现出更强的结合亲和力。我们假设这些化合物可能是开发抗COVID-19靶向特异性药物的潜在先导候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-silico elucidation reveals potential phytochemicals against angiotensin-converting enzyme 2 (ACE-2) receptor to fight coronavirus disease 2019 (COVID-19)
Abstract The coronavirus (SARS-CoV-2) pandemic is rapidly advancing and spreading worldwide, which poses an urgent need to develop anti-SARS-CoV-2 agents. A human receptor, namely, angiotensin-converting enzyme 2 (ACE-2), supports the SARS-CoV-2 entry, therefore, serves as a target for intervention via drug. In the current study, bioinformatic approaches were employed to screen potent bioactive compounds that might be ACE-2 receptor inhibitors. The employment of a docking study using ACE receptor protein with a ready-to-dock database of phytochemicals via MOE software revealed five compounds as potent molecules. Among them, astragaloside exhibited the highest binding affinity −21.8 kcal/mol and stable interactions within the active site of the ACE-2 receptor. Similarly, the phytochemicals such as pterocaryanin B, isoastragaloside II, and astraisoflavan glucoside followed by oleuropein showed a stronger binding affinity. We hypothesize these compounds as potential lead candidates for the development of anti- COVID-19 target-specific drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信