多道路类型填水与车辆控制的道路检测方法

Tomoya Fukukawa, Yu Maeda, K. Sekiyama, T. Fukuda
{"title":"多道路类型填水与车辆控制的道路检测方法","authors":"Tomoya Fukukawa, Yu Maeda, K. Sekiyama, T. Fukuda","doi":"10.1109/RVSP.2013.68","DOIUrl":null,"url":null,"abstract":"This paper proposes the road detection method corresponded to multi road types with Flood Fill. Flood Fill is one of the image processing methods to partition the region of input image based on RGB color model. Road detection is useful for automatic robots because the robots work on various road surface in outdoor environment. The proposed method has two features. Firstly, the method can cancel the influence of shadow on road by using HSV color model. Secondly, the method can recognize multi road types by k-nearest neighbor algorithm. By using the proposed method, the robot can select the suitable controller for road surface or the safety route. We implement the proposed method in vehicle navigation and the availability is verified by the experimental results.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"23 1","pages":"274-277"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Road Detection Method Corresponded to Multi Road Types with Flood Fill and Vehicle Control\",\"authors\":\"Tomoya Fukukawa, Yu Maeda, K. Sekiyama, T. Fukuda\",\"doi\":\"10.1109/RVSP.2013.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the road detection method corresponded to multi road types with Flood Fill. Flood Fill is one of the image processing methods to partition the region of input image based on RGB color model. Road detection is useful for automatic robots because the robots work on various road surface in outdoor environment. The proposed method has two features. Firstly, the method can cancel the influence of shadow on road by using HSV color model. Secondly, the method can recognize multi road types by k-nearest neighbor algorithm. By using the proposed method, the robot can select the suitable controller for road surface or the safety route. We implement the proposed method in vehicle navigation and the availability is verified by the experimental results.\",\"PeriodicalId\":6585,\"journal\":{\"name\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"volume\":\"23 1\",\"pages\":\"274-277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RVSP.2013.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种适用于多种道路类型的洪水填筑道路检测方法。洪水填充是一种基于RGB颜色模型对输入图像进行区域划分的图像处理方法。由于自动机器人在室外环境中工作在各种路面上,因此道路检测对自动机器人非常有用。该方法具有两个特点。该方法首先利用HSV颜色模型消除阴影对道路的影响;其次,采用k近邻算法对多种道路类型进行识别;利用该方法,机器人可以根据路面或安全路线选择合适的控制器。将该方法应用于车辆导航,实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Detection Method Corresponded to Multi Road Types with Flood Fill and Vehicle Control
This paper proposes the road detection method corresponded to multi road types with Flood Fill. Flood Fill is one of the image processing methods to partition the region of input image based on RGB color model. Road detection is useful for automatic robots because the robots work on various road surface in outdoor environment. The proposed method has two features. Firstly, the method can cancel the influence of shadow on road by using HSV color model. Secondly, the method can recognize multi road types by k-nearest neighbor algorithm. By using the proposed method, the robot can select the suitable controller for road surface or the safety route. We implement the proposed method in vehicle navigation and the availability is verified by the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信