通过灌溉和养分管理改善生姜的生长、产量和品质:来自印度Inceptisol的研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Sengupta, S. Patra, R. Poddar, K. Bhattacharyya
{"title":"通过灌溉和养分管理改善生姜的生长、产量和品质:来自印度Inceptisol的研究","authors":"S. Sengupta, S. Patra, R. Poddar, K. Bhattacharyya","doi":"10.17159/wsa/2022.v48.i4.3951","DOIUrl":null,"url":null,"abstract":"A proper protocol of efficient irrigation and nutrient management for ginger is a necessity for boosting the productivity and quality of the crop in high-intensity cultivated lands. For this, a field experiment for 3 consecutive years was conducted in an Inceptisol of India to optimize irrigation schedule and nutrient management for augmenting rhizome yield and crop water productivity (CWP) of ginger. The trial was laid out in a split plot design with 12 treatment combinations consisting of 4 levels of irrigation schedules viz., rainfed (I1) and a ratio of 0.6 (I2), 0.9 (I3) and 1.2 (I4) of irrigation water to cumulative pan evaporation (IW/CPE) and 3 levels of nutrient management: 100% recommended dose of fertilizer (RDF) through inorganic (N1), 75% RDF (inorganic) + 25% RDF through vermicompost (VC) (N2) and 50% RDF (inorganic) + 50% RDF through VC (N3). Mean maximum growth and yield components, quality parameters, green rhizome yield (12.63 Mg‧ha−1) and highest nutrient uptake were obtained with I4N2, which was statistically on par with I3N2. The treatment combination I1N2 exhibited maximum CWP. Well-managed irrigation and nutrient scheduling is key to improving ginger production and its marketability for better financial returns.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the growth, yield, and quality of ginger (Zingiber officinale Rosc.) through irrigation and nutrient management: a study from an Inceptisol of India\",\"authors\":\"S. Sengupta, S. Patra, R. Poddar, K. Bhattacharyya\",\"doi\":\"10.17159/wsa/2022.v48.i4.3951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A proper protocol of efficient irrigation and nutrient management for ginger is a necessity for boosting the productivity and quality of the crop in high-intensity cultivated lands. For this, a field experiment for 3 consecutive years was conducted in an Inceptisol of India to optimize irrigation schedule and nutrient management for augmenting rhizome yield and crop water productivity (CWP) of ginger. The trial was laid out in a split plot design with 12 treatment combinations consisting of 4 levels of irrigation schedules viz., rainfed (I1) and a ratio of 0.6 (I2), 0.9 (I3) and 1.2 (I4) of irrigation water to cumulative pan evaporation (IW/CPE) and 3 levels of nutrient management: 100% recommended dose of fertilizer (RDF) through inorganic (N1), 75% RDF (inorganic) + 25% RDF through vermicompost (VC) (N2) and 50% RDF (inorganic) + 50% RDF through VC (N3). Mean maximum growth and yield components, quality parameters, green rhizome yield (12.63 Mg‧ha−1) and highest nutrient uptake were obtained with I4N2, which was statistically on par with I3N2. The treatment combination I1N2 exhibited maximum CWP. Well-managed irrigation and nutrient scheduling is key to improving ginger production and its marketability for better financial returns.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2022.v48.i4.3951\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i4.3951","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

合理的生姜灌溉和养分管理方案是提高高集约化耕地生姜产量和品质的必要条件。为了提高生姜根茎产量和作物水分生产力(CWP),在印度Inceptisol进行了连续3年的田间试验,优化灌溉计划和养分管理。试验采用分畦设计,采用12种处理组合,包括4个水平的灌溉计划,即雨养(I1),灌溉水与累积蒸发量(IW/CPE)的比例为0.6 (I2)、0.9 (I3)和1.2 (I4); 3个水平的养分管理:100%推荐剂量的肥料(RDF)(无机)(N1), 75% RDF(无机)+ 25% RDF (VC) (N2)和50% RDF(无机)+ 50% RDF (VC) (N3)。I4N2处理的平均最大生长和产量成分、品质参数、绿根茎产量(12.63 Mg·ha−1)和养分吸收量最高,在统计学上与I3N2相当。处理组合I1N2表现出最大CWP。管理良好的灌溉和养分调度是提高生姜产量及其市场销售能力以获得更好经济回报的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the growth, yield, and quality of ginger (Zingiber officinale Rosc.) through irrigation and nutrient management: a study from an Inceptisol of India
A proper protocol of efficient irrigation and nutrient management for ginger is a necessity for boosting the productivity and quality of the crop in high-intensity cultivated lands. For this, a field experiment for 3 consecutive years was conducted in an Inceptisol of India to optimize irrigation schedule and nutrient management for augmenting rhizome yield and crop water productivity (CWP) of ginger. The trial was laid out in a split plot design with 12 treatment combinations consisting of 4 levels of irrigation schedules viz., rainfed (I1) and a ratio of 0.6 (I2), 0.9 (I3) and 1.2 (I4) of irrigation water to cumulative pan evaporation (IW/CPE) and 3 levels of nutrient management: 100% recommended dose of fertilizer (RDF) through inorganic (N1), 75% RDF (inorganic) + 25% RDF through vermicompost (VC) (N2) and 50% RDF (inorganic) + 50% RDF through VC (N3). Mean maximum growth and yield components, quality parameters, green rhizome yield (12.63 Mg‧ha−1) and highest nutrient uptake were obtained with I4N2, which was statistically on par with I3N2. The treatment combination I1N2 exhibited maximum CWP. Well-managed irrigation and nutrient scheduling is key to improving ginger production and its marketability for better financial returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信