V. Krishnaswami, C. V. van Noorden, E. Manders, R. Hoebe
{"title":"空间控制照明显微镜","authors":"V. Krishnaswami, C. V. van Noorden, E. Manders, R. Hoebe","doi":"10.1017/S0033583516000135","DOIUrl":null,"url":null,"abstract":"Abstract Live-cell and live-tissue imaging using fluorescence optical microscopes presents an inherent trade-off between image quality and photodamage. Spatially-controlled illumination microscopy (SCIM) aims to strike the right balance between obtaining good image quality and minimizing the risk of photodamage. In traditional imaging, illumination is performed with a spatially-uniform light dose resulting in spatially-variable detected signals. SCIM adopts an alternative imaging approach where illumination is performed with a spatially-variable light dose resulting in spatially-uniform detected signals. The actual image information of the biological specimen in SCIM is predominantly encoded in the illumination profile. SCIM uses real-time spatial control of illumination in the imaging of fluorescent biological specimens. This alternative imaging paradigm reduces the overall illumination light dose during imaging, which facilitates prolonged imaging of live biological specimens by minimizing photodamage without compromising image quality. Additionally, the dynamic range of a SCIM image is no longer limited by the dynamic range of the detector (or camera), since it employs a uniform detection strategy. The large dynamic range of SCIM is predominantly determined by the illumination profile, and is advantageous for imaging both live and fixed biological specimens. In the present review, the concept and working mechanisms of SCIM are discussed, together with its application in various types of optical microscopes.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatially-controlled illumination microscopy\",\"authors\":\"V. Krishnaswami, C. V. van Noorden, E. Manders, R. Hoebe\",\"doi\":\"10.1017/S0033583516000135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Live-cell and live-tissue imaging using fluorescence optical microscopes presents an inherent trade-off between image quality and photodamage. Spatially-controlled illumination microscopy (SCIM) aims to strike the right balance between obtaining good image quality and minimizing the risk of photodamage. In traditional imaging, illumination is performed with a spatially-uniform light dose resulting in spatially-variable detected signals. SCIM adopts an alternative imaging approach where illumination is performed with a spatially-variable light dose resulting in spatially-uniform detected signals. The actual image information of the biological specimen in SCIM is predominantly encoded in the illumination profile. SCIM uses real-time spatial control of illumination in the imaging of fluorescent biological specimens. This alternative imaging paradigm reduces the overall illumination light dose during imaging, which facilitates prolonged imaging of live biological specimens by minimizing photodamage without compromising image quality. Additionally, the dynamic range of a SCIM image is no longer limited by the dynamic range of the detector (or camera), since it employs a uniform detection strategy. The large dynamic range of SCIM is predominantly determined by the illumination profile, and is advantageous for imaging both live and fixed biological specimens. In the present review, the concept and working mechanisms of SCIM are discussed, together with its application in various types of optical microscopes.\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033583516000135\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583516000135","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Abstract Live-cell and live-tissue imaging using fluorescence optical microscopes presents an inherent trade-off between image quality and photodamage. Spatially-controlled illumination microscopy (SCIM) aims to strike the right balance between obtaining good image quality and minimizing the risk of photodamage. In traditional imaging, illumination is performed with a spatially-uniform light dose resulting in spatially-variable detected signals. SCIM adopts an alternative imaging approach where illumination is performed with a spatially-variable light dose resulting in spatially-uniform detected signals. The actual image information of the biological specimen in SCIM is predominantly encoded in the illumination profile. SCIM uses real-time spatial control of illumination in the imaging of fluorescent biological specimens. This alternative imaging paradigm reduces the overall illumination light dose during imaging, which facilitates prolonged imaging of live biological specimens by minimizing photodamage without compromising image quality. Additionally, the dynamic range of a SCIM image is no longer limited by the dynamic range of the detector (or camera), since it employs a uniform detection strategy. The large dynamic range of SCIM is predominantly determined by the illumination profile, and is advantageous for imaging both live and fixed biological specimens. In the present review, the concept and working mechanisms of SCIM are discussed, together with its application in various types of optical microscopes.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.