{"title":"关于高阶斯托克斯现象","authors":"C. Howls, P. J. Langman, A. Olde Daalhuis","doi":"10.1098/rspa.2004.1299","DOIUrl":null,"url":null,"abstract":"During the course of a Stokes phenomenon, an asymptotic expansion can change its form as a further series, prefactored by an exponentially small term and a Stokes multiplier, appears in the representation. The initially exponentially small contribution may nevertheless grow to dominate the behaviour for other values of the asymptotic or associated parameters. In this paper we introduce the concept of a‘higher–order Stokes phenomeno’, at which a Stokes multiplier itself can change value. We show that the higher–order Stokes phenomenon can be used to explain the apparent sudden birth of Stokes lines at regular points and how it is indispensable to the proper derivation of expansions that involve three or more possible asymptotic contributions. We provide an example of how the higher–order Stokes phenomenon can have important effects on the large–time behaviour of partial differential equations.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"45 1","pages":"2285 - 2303"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"On the higher–order Stokes phenomenon\",\"authors\":\"C. Howls, P. J. Langman, A. Olde Daalhuis\",\"doi\":\"10.1098/rspa.2004.1299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the course of a Stokes phenomenon, an asymptotic expansion can change its form as a further series, prefactored by an exponentially small term and a Stokes multiplier, appears in the representation. The initially exponentially small contribution may nevertheless grow to dominate the behaviour for other values of the asymptotic or associated parameters. In this paper we introduce the concept of a‘higher–order Stokes phenomeno’, at which a Stokes multiplier itself can change value. We show that the higher–order Stokes phenomenon can be used to explain the apparent sudden birth of Stokes lines at regular points and how it is indispensable to the proper derivation of expansions that involve three or more possible asymptotic contributions. We provide an example of how the higher–order Stokes phenomenon can have important effects on the large–time behaviour of partial differential equations.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"45 1\",\"pages\":\"2285 - 2303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
During the course of a Stokes phenomenon, an asymptotic expansion can change its form as a further series, prefactored by an exponentially small term and a Stokes multiplier, appears in the representation. The initially exponentially small contribution may nevertheless grow to dominate the behaviour for other values of the asymptotic or associated parameters. In this paper we introduce the concept of a‘higher–order Stokes phenomeno’, at which a Stokes multiplier itself can change value. We show that the higher–order Stokes phenomenon can be used to explain the apparent sudden birth of Stokes lines at regular points and how it is indispensable to the proper derivation of expansions that involve three or more possible asymptotic contributions. We provide an example of how the higher–order Stokes phenomenon can have important effects on the large–time behaviour of partial differential equations.
期刊介绍:
Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.