{"title":"物理互连的大规模部分未知严格反馈系统的事件触发分布式H∞约束控制","authors":"Luy Tan Nguyen","doi":"10.1109/TSMC.2019.2914160","DOIUrl":null,"url":null,"abstract":"In this paper, an event-triggered distributed <inline-formula> <tex-math notation=\"LaTeX\">${ {\\mathcal {H}}_{\\infty }}$ </tex-math></inline-formula> constrained control algorithm is designed for physically interconnected large-scale partially unknown strict-feedback systems with constrained-input and external disturbance. The advantage of both physical interconnection and communication is synchronously exploited for the scheme. First, an event-triggered feedforward control policy is proposed to transform control of physically interconnected large-scale systems into equivalent event-triggered control of decoupled multiagent systems. Then, an event-triggering condition and an event-triggered feedback control algorithm are designed to learn the optimal control policy and the disturbance policy in the worst case. The algorithm eliminates identifier, actor, and disturber neural networks and also relaxes the persistent excitation condition. It guarantees that the closed-loop dynamics is stabilized and the cost function is converged to the bounded <inline-formula> <tex-math notation=\"LaTeX\">${\\mathcal {L}}_{2}$ </tex-math></inline-formula>-gain optimal value while the Zeno phenomenon is excluded. Finally, the effectiveness of the proposed algorithm is verified through simulation results of event-triggered distributed control of a physically interconnected constrained-torques multimobile robot system.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"22 1","pages":"2444-2456"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Event-Triggered Distributed H∞ Constrained Control of Physically Interconnected Large-Scale Partially Unknown Strict-Feedback Systems\",\"authors\":\"Luy Tan Nguyen\",\"doi\":\"10.1109/TSMC.2019.2914160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an event-triggered distributed <inline-formula> <tex-math notation=\\\"LaTeX\\\">${ {\\\\mathcal {H}}_{\\\\infty }}$ </tex-math></inline-formula> constrained control algorithm is designed for physically interconnected large-scale partially unknown strict-feedback systems with constrained-input and external disturbance. The advantage of both physical interconnection and communication is synchronously exploited for the scheme. First, an event-triggered feedforward control policy is proposed to transform control of physically interconnected large-scale systems into equivalent event-triggered control of decoupled multiagent systems. Then, an event-triggering condition and an event-triggered feedback control algorithm are designed to learn the optimal control policy and the disturbance policy in the worst case. The algorithm eliminates identifier, actor, and disturber neural networks and also relaxes the persistent excitation condition. It guarantees that the closed-loop dynamics is stabilized and the cost function is converged to the bounded <inline-formula> <tex-math notation=\\\"LaTeX\\\">${\\\\mathcal {L}}_{2}$ </tex-math></inline-formula>-gain optimal value while the Zeno phenomenon is excluded. Finally, the effectiveness of the proposed algorithm is verified through simulation results of event-triggered distributed control of a physically interconnected constrained-torques multimobile robot system.\",\"PeriodicalId\":55007,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"volume\":\"22 1\",\"pages\":\"2444-2456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.2019.2914160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2914160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event-Triggered Distributed H∞ Constrained Control of Physically Interconnected Large-Scale Partially Unknown Strict-Feedback Systems
In this paper, an event-triggered distributed ${ {\mathcal {H}}_{\infty }}$ constrained control algorithm is designed for physically interconnected large-scale partially unknown strict-feedback systems with constrained-input and external disturbance. The advantage of both physical interconnection and communication is synchronously exploited for the scheme. First, an event-triggered feedforward control policy is proposed to transform control of physically interconnected large-scale systems into equivalent event-triggered control of decoupled multiagent systems. Then, an event-triggering condition and an event-triggered feedback control algorithm are designed to learn the optimal control policy and the disturbance policy in the worst case. The algorithm eliminates identifier, actor, and disturber neural networks and also relaxes the persistent excitation condition. It guarantees that the closed-loop dynamics is stabilized and the cost function is converged to the bounded ${\mathcal {L}}_{2}$ -gain optimal value while the Zeno phenomenon is excluded. Finally, the effectiveness of the proposed algorithm is verified through simulation results of event-triggered distributed control of a physically interconnected constrained-torques multimobile robot system.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.