{"title":"基于luttinger -液体的双通道电荷近藤电路的热功率:非微扰解","authors":"A. Parafilo, Thanh Thi Kim Nguyen","doi":"10.15625/0868-3166/17705","DOIUrl":null,"url":null,"abstract":"Recently, the influence of electron-electron interactions on the thermoelectric transport in a two-channel charge Kondo circuit has been studied in [Phys. Rev. B 105, L121405 (2022)]. In this paper, we revisit the Luttinger-liquid-based model and discuss in details the limit where the spin field is noninteracting (\\(g_\\sigma = 1\\)) and the interaction in the charge sector is repulsive (\\(0< g_\\rho \\leq 1\\)). The thermoelectric transport coefficients are computed nonperturbatively with respect to the reflection amplitude at the quantum point contact. At low temperatures the thermopower shows the non-Fermi liquid behavior in the vicinity of the Coulomb peaks. We also demonstrate that repulsive interaction results in the enhancement of the thermoelectrical power.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermopower of a Luttinger-liquid-based Two-channel Charge Kondo Circuit: Nonperturbative Solution\",\"authors\":\"A. Parafilo, Thanh Thi Kim Nguyen\",\"doi\":\"10.15625/0868-3166/17705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the influence of electron-electron interactions on the thermoelectric transport in a two-channel charge Kondo circuit has been studied in [Phys. Rev. B 105, L121405 (2022)]. In this paper, we revisit the Luttinger-liquid-based model and discuss in details the limit where the spin field is noninteracting (\\\\(g_\\\\sigma = 1\\\\)) and the interaction in the charge sector is repulsive (\\\\(0< g_\\\\rho \\\\leq 1\\\\)). The thermoelectric transport coefficients are computed nonperturbatively with respect to the reflection amplitude at the quantum point contact. At low temperatures the thermopower shows the non-Fermi liquid behavior in the vicinity of the Coulomb peaks. We also demonstrate that repulsive interaction results in the enhancement of the thermoelectrical power.\",\"PeriodicalId\":10571,\"journal\":{\"name\":\"Communications in Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0868-3166/17705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/17705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermopower of a Luttinger-liquid-based Two-channel Charge Kondo Circuit: Nonperturbative Solution
Recently, the influence of electron-electron interactions on the thermoelectric transport in a two-channel charge Kondo circuit has been studied in [Phys. Rev. B 105, L121405 (2022)]. In this paper, we revisit the Luttinger-liquid-based model and discuss in details the limit where the spin field is noninteracting (\(g_\sigma = 1\)) and the interaction in the charge sector is repulsive (\(0< g_\rho \leq 1\)). The thermoelectric transport coefficients are computed nonperturbatively with respect to the reflection amplitude at the quantum point contact. At low temperatures the thermopower shows the non-Fermi liquid behavior in the vicinity of the Coulomb peaks. We also demonstrate that repulsive interaction results in the enhancement of the thermoelectrical power.