零星Mathieu群块的1次Hochschild上同调的李代数结构

Pub Date : 2022-07-22 DOI:10.1515/jgth-2021-0176
William Murphy
{"title":"零星Mathieu群块的1次Hochschild上同调的李代数结构","authors":"William Murphy","doi":"10.1515/jgth-2021-0176","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝐺 be one of the sporadic simple Mathieu groups M 11 M_{11} , M 12 M_{12} , M 22 M_{22} , M 23 M_{23} or M 24 M_{24} , and suppose 𝑘 is an algebraically closed field of prime characteristic 𝑝, dividing the order of 𝐺. In this paper, we describe some of the Lie algebra structure of the first Hochschild cohomology groups of the 𝑝-blocks of k ⁢ G kG . In particular, we calculate the dimension of HH 1 ⁢ ( B ) \\mathrm{HH}^{1}(B) for the 𝑝-blocks 𝐵 of k ⁢ G kG , and in almost all cases, we determine whether HH 1 ⁢ ( B ) \\mathrm{HH}^{1}(B) is a solvable Lie algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Lie algebra structure of the degree one Hochschild cohomology of the blocks of the sporadic Mathieu groups\",\"authors\":\"William Murphy\",\"doi\":\"10.1515/jgth-2021-0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝐺 be one of the sporadic simple Mathieu groups M 11 M_{11} , M 12 M_{12} , M 22 M_{22} , M 23 M_{23} or M 24 M_{24} , and suppose 𝑘 is an algebraically closed field of prime characteristic 𝑝, dividing the order of 𝐺. In this paper, we describe some of the Lie algebra structure of the first Hochschild cohomology groups of the 𝑝-blocks of k ⁢ G kG . In particular, we calculate the dimension of HH 1 ⁢ ( B ) \\\\mathrm{HH}^{1}(B) for the 𝑝-blocks 𝐵 of k ⁢ G kG , and in almost all cases, we determine whether HH 1 ⁢ ( B ) \\\\mathrm{HH}^{1}(B) is a solvable Lie algebra.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要设𝐺为散在的简单Mathieu群M 11 M_{11}, M 12 M_{12}, M 22 M_{22}, M 23 M_{23}或M 24 M_{24}中的一个,设𝑘为素数特征的代数闭域𝑝,分𝐺的阶。本文描述了k ^ gkg的𝑝-blocks的第一Hochschild上同调群的一些李代数结构。特别是,我们计算的维数HH 1⁢(B) \ mathrm {HH} ^ {1} (B)𝑝-blocks𝐵k⁢G公斤,在几乎所有的情况下,我们决定HH 1⁢(B) \ mathrm {HH} ^ {1} (B)是一个可解李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Lie algebra structure of the degree one Hochschild cohomology of the blocks of the sporadic Mathieu groups
Abstract Let 𝐺 be one of the sporadic simple Mathieu groups M 11 M_{11} , M 12 M_{12} , M 22 M_{22} , M 23 M_{23} or M 24 M_{24} , and suppose 𝑘 is an algebraically closed field of prime characteristic 𝑝, dividing the order of 𝐺. In this paper, we describe some of the Lie algebra structure of the first Hochschild cohomology groups of the 𝑝-blocks of k ⁢ G kG . In particular, we calculate the dimension of HH 1 ⁢ ( B ) \mathrm{HH}^{1}(B) for the 𝑝-blocks 𝐵 of k ⁢ G kG , and in almost all cases, we determine whether HH 1 ⁢ ( B ) \mathrm{HH}^{1}(B) is a solvable Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信