{"title":"加权最小二乘与分位数回归求解简单线性回归异方差的比较","authors":"Welly Fransiska, S. Nugroho, R. Rachmawati","doi":"10.33369/jsds.v1i1.21011","DOIUrl":null,"url":null,"abstract":"Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Weighted Least Square and Quantile Regression for Solving Heteroscedasticity in Simple Linear Regression\",\"authors\":\"Welly Fransiska, S. Nugroho, R. Rachmawati\",\"doi\":\"10.33369/jsds.v1i1.21011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).\",\"PeriodicalId\":29911,\"journal\":{\"name\":\"Japanese Journal of Statistics and Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Statistics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33369/jsds.v1i1.21011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/jsds.v1i1.21011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Comparison of Weighted Least Square and Quantile Regression for Solving Heteroscedasticity in Simple Linear Regression
Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).