加权最小二乘与分位数回归求解简单线性回归异方差的比较

IF 1.1 Q3 STATISTICS & PROBABILITY
Welly Fransiska, S. Nugroho, R. Rachmawati
{"title":"加权最小二乘与分位数回归求解简单线性回归异方差的比较","authors":"Welly Fransiska, S. Nugroho, R. Rachmawati","doi":"10.33369/jsds.v1i1.21011","DOIUrl":null,"url":null,"abstract":"Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"26 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Weighted Least Square and Quantile Regression for Solving Heteroscedasticity in Simple Linear Regression\",\"authors\":\"Welly Fransiska, S. Nugroho, R. Rachmawati\",\"doi\":\"10.33369/jsds.v1i1.21011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).\",\"PeriodicalId\":29911,\"journal\":{\"name\":\"Japanese Journal of Statistics and Data Science\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Statistics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33369/jsds.v1i1.21011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/jsds.v1i1.21011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

回归分析是研究因变量与一个或多个自变量之间的关系。得到回归系数估计量最佳线性无偏估计量(BLUE)必须满足的一个重要假设是均方差。如果违背了同方差假设,则称之为异方差。异方差的结果是估计量保持线性和无偏,但它可能导致估计量没有最小方差,因此估计量不再是BLUE。本研究的目的是利用加权最小二乘法和分位数回归分析和解决异方差假设的违反。根据WLS和分位数回归的比较结果得出,本研究中用于克服异方差的最精确的方法是WLS方法,因为它产生的异方差更大(98%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Weighted Least Square and Quantile Regression for Solving Heteroscedasticity in Simple Linear Regression
Regression analysis is the study of the relationship between dependent variable and one or more independent variables. One of the important assumption that must be fulfilled to get the regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. If the homoscedasticity assumption is violated then it is called heteroscedasticity. The consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the comparison between WLS and Quantile Regression obtained the most precise method used to overcome heteroscedasticity in this research is the WLS method because it produces that is greater (98%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信