A. Bermudez-Garcia, P. Voarino, R. Cariou, L. Vauche, Karim Medjoubi, C. Jany, O. Raccurt
{"title":"第一个使用III-V/Si电池的空间聚光器原型","authors":"A. Bermudez-Garcia, P. Voarino, R. Cariou, L. Vauche, Karim Medjoubi, C. Jany, O. Raccurt","doi":"10.1109/ESPC.2019.8932066","DOIUrl":null,"url":null,"abstract":"Concentrating PhotoVoltaics (CPV) can increase the efficiency of power systems in space while reducing their cost. This paper presents the first concentrator prototype using III-V/Si cells for space applications. This new approach will significantly reduce cost by concentrating sunlight then decreasing cell material, and in particular using III-V/Si triple-junction (3J) cells will allow the usage of Silicon, which is an abundant, twice less dense and low-cost material than the typically used Germanium. The efficiency of III-V/Si solar cells used is 25.7% @AM0. In our refractive module design, Compound Parabolic Concentrator (CPC), twelve 1.5x13mm2 cells are embedded in a Dow Corning® 93-500 silicone optics that provides an ∼8x concentration factor with an optical efficiency of 68%. Additionally, this linear-focus lens enables the use of single-axis sun tracking.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"17 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First space concentrator prototype using III-V/Si cells\",\"authors\":\"A. Bermudez-Garcia, P. Voarino, R. Cariou, L. Vauche, Karim Medjoubi, C. Jany, O. Raccurt\",\"doi\":\"10.1109/ESPC.2019.8932066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concentrating PhotoVoltaics (CPV) can increase the efficiency of power systems in space while reducing their cost. This paper presents the first concentrator prototype using III-V/Si cells for space applications. This new approach will significantly reduce cost by concentrating sunlight then decreasing cell material, and in particular using III-V/Si triple-junction (3J) cells will allow the usage of Silicon, which is an abundant, twice less dense and low-cost material than the typically used Germanium. The efficiency of III-V/Si solar cells used is 25.7% @AM0. In our refractive module design, Compound Parabolic Concentrator (CPC), twelve 1.5x13mm2 cells are embedded in a Dow Corning® 93-500 silicone optics that provides an ∼8x concentration factor with an optical efficiency of 68%. Additionally, this linear-focus lens enables the use of single-axis sun tracking.\",\"PeriodicalId\":6734,\"journal\":{\"name\":\"2019 European Space Power Conference (ESPC)\",\"volume\":\"17 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Space Power Conference (ESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPC.2019.8932066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First space concentrator prototype using III-V/Si cells
Concentrating PhotoVoltaics (CPV) can increase the efficiency of power systems in space while reducing their cost. This paper presents the first concentrator prototype using III-V/Si cells for space applications. This new approach will significantly reduce cost by concentrating sunlight then decreasing cell material, and in particular using III-V/Si triple-junction (3J) cells will allow the usage of Silicon, which is an abundant, twice less dense and low-cost material than the typically used Germanium. The efficiency of III-V/Si solar cells used is 25.7% @AM0. In our refractive module design, Compound Parabolic Concentrator (CPC), twelve 1.5x13mm2 cells are embedded in a Dow Corning® 93-500 silicone optics that provides an ∼8x concentration factor with an optical efficiency of 68%. Additionally, this linear-focus lens enables the use of single-axis sun tracking.