Meng Li, Zanlin Cheng, J. Dusza, Z. Song, Fangkun Xiao, Manfeng Gong, Shangyue Sun, Chengyu Zhang
{"title":"石墨烯片增强WC-Co硬质合金的磨损行为","authors":"Meng Li, Zanlin Cheng, J. Dusza, Z. Song, Fangkun Xiao, Manfeng Gong, Shangyue Sun, Chengyu Zhang","doi":"10.1080/17436753.2022.2121531","DOIUrl":null,"url":null,"abstract":"ABSTRACT The wear behaviour of WC-Co cemented carbide reinforced with graphene platelets (WC-Co-GPLs composite) was investigated. The tribological parameters as friction coefficient and wear rate were measured using a ball-on-plate configuration with different contact loads. The microstructures and worn surfaces of composites were studied. The WC-Co-GPLs composite exhibits significantly better tribological properties in comparison to the WC-Co which is most evident at contact load of 80 N, where the friction coefficient and wear rate of the WC-Co-GPLs composite are 0.339 and 9.27 × 10−6 mm3·(m·N)−1, respectively. The improvement in wear behaviour of WC-Co-GPLs composite is attributed to the formation of the tribofilm during the wear test and enhancement of mechanical properties of the WC-Co-GPLs composite. The pulled-out GPLs attaches on the worn surface contribute to the formation of tribofilms during tribology test, especially at higher loads. The tribofilms protect the WC-Co-GPLs from wear and guarantee the integrity of the worn surface.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"17 1","pages":"143 - 149"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear behaviour of graphene platelets reinforced WC-Co cemented carbide\",\"authors\":\"Meng Li, Zanlin Cheng, J. Dusza, Z. Song, Fangkun Xiao, Manfeng Gong, Shangyue Sun, Chengyu Zhang\",\"doi\":\"10.1080/17436753.2022.2121531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The wear behaviour of WC-Co cemented carbide reinforced with graphene platelets (WC-Co-GPLs composite) was investigated. The tribological parameters as friction coefficient and wear rate were measured using a ball-on-plate configuration with different contact loads. The microstructures and worn surfaces of composites were studied. The WC-Co-GPLs composite exhibits significantly better tribological properties in comparison to the WC-Co which is most evident at contact load of 80 N, where the friction coefficient and wear rate of the WC-Co-GPLs composite are 0.339 and 9.27 × 10−6 mm3·(m·N)−1, respectively. The improvement in wear behaviour of WC-Co-GPLs composite is attributed to the formation of the tribofilm during the wear test and enhancement of mechanical properties of the WC-Co-GPLs composite. The pulled-out GPLs attaches on the worn surface contribute to the formation of tribofilms during tribology test, especially at higher loads. The tribofilms protect the WC-Co-GPLs from wear and guarantee the integrity of the worn surface.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"17 1\",\"pages\":\"143 - 149\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2022.2121531\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2022.2121531","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Wear behaviour of graphene platelets reinforced WC-Co cemented carbide
ABSTRACT The wear behaviour of WC-Co cemented carbide reinforced with graphene platelets (WC-Co-GPLs composite) was investigated. The tribological parameters as friction coefficient and wear rate were measured using a ball-on-plate configuration with different contact loads. The microstructures and worn surfaces of composites were studied. The WC-Co-GPLs composite exhibits significantly better tribological properties in comparison to the WC-Co which is most evident at contact load of 80 N, where the friction coefficient and wear rate of the WC-Co-GPLs composite are 0.339 and 9.27 × 10−6 mm3·(m·N)−1, respectively. The improvement in wear behaviour of WC-Co-GPLs composite is attributed to the formation of the tribofilm during the wear test and enhancement of mechanical properties of the WC-Co-GPLs composite. The pulled-out GPLs attaches on the worn surface contribute to the formation of tribofilms during tribology test, especially at higher loads. The tribofilms protect the WC-Co-GPLs from wear and guarantee the integrity of the worn surface.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.