Hao Xu, Weiling Guo, Jie Deng, Jiaxin Chen, Dong Li, Jie Sun
{"title":"P/N非连续欧姆接触LED的优化设计","authors":"Hao Xu, Weiling Guo, Jie Deng, Jiaxin Chen, Dong Li, Jie Sun","doi":"10.1109/SSLChinaIFWS54608.2021.9675183","DOIUrl":null,"url":null,"abstract":"To further improve the performance of the LED and seek a better electrode structure of LED, this paper designs and prepares a variety of devices with different electrode window sizes and spacings based on the P/N electrode discontinuous ohmic contact LED. By comparing the influence of different electrode window sizes and spacings on the photoelectric performance of LED under 5-500mA driving current, the best performance electrode window size and spacing are obtained. The test results in this paper show that when the N electrode window spacing is reduced from 45µm to 37µm, the device voltage decreases, and the spectral area increases. When the size of the N electrode window is reduced from 5µm×17µm to 5µm×10µm, although the voltage of the device has increased, the luminous efficiency under the rated current of 150mA is increased by 4.9%. When the distance between the P electrode windows is increased from 20µm to 30µm, the voltage of the device will increase, but the luminous efficiency under the test current of 150mA is increased by 7.2%. Although the size of the P electrode window has little effect on the light-emitting performance of the device, increasing the size of the P electrode window to a certain extent can improve the electrical characteristics of the device. The best structure obtained in this paper to improve the light-emitting performance of the device is: the size of the N electrode window is 5µm×10µm, and the spacing is 37µm; the size of the P electrode window is 15µm×5µm, and the spacing is 30µm.","PeriodicalId":6816,"journal":{"name":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","volume":"118 1","pages":"105-108"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of P/N discontinuous ohmic contact LED\",\"authors\":\"Hao Xu, Weiling Guo, Jie Deng, Jiaxin Chen, Dong Li, Jie Sun\",\"doi\":\"10.1109/SSLChinaIFWS54608.2021.9675183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To further improve the performance of the LED and seek a better electrode structure of LED, this paper designs and prepares a variety of devices with different electrode window sizes and spacings based on the P/N electrode discontinuous ohmic contact LED. By comparing the influence of different electrode window sizes and spacings on the photoelectric performance of LED under 5-500mA driving current, the best performance electrode window size and spacing are obtained. The test results in this paper show that when the N electrode window spacing is reduced from 45µm to 37µm, the device voltage decreases, and the spectral area increases. When the size of the N electrode window is reduced from 5µm×17µm to 5µm×10µm, although the voltage of the device has increased, the luminous efficiency under the rated current of 150mA is increased by 4.9%. When the distance between the P electrode windows is increased from 20µm to 30µm, the voltage of the device will increase, but the luminous efficiency under the test current of 150mA is increased by 7.2%. Although the size of the P electrode window has little effect on the light-emitting performance of the device, increasing the size of the P electrode window to a certain extent can improve the electrical characteristics of the device. The best structure obtained in this paper to improve the light-emitting performance of the device is: the size of the N electrode window is 5µm×10µm, and the spacing is 37µm; the size of the P electrode window is 15µm×5µm, and the spacing is 30µm.\",\"PeriodicalId\":6816,\"journal\":{\"name\":\"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)\",\"volume\":\"118 1\",\"pages\":\"105-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of P/N discontinuous ohmic contact LED
To further improve the performance of the LED and seek a better electrode structure of LED, this paper designs and prepares a variety of devices with different electrode window sizes and spacings based on the P/N electrode discontinuous ohmic contact LED. By comparing the influence of different electrode window sizes and spacings on the photoelectric performance of LED under 5-500mA driving current, the best performance electrode window size and spacing are obtained. The test results in this paper show that when the N electrode window spacing is reduced from 45µm to 37µm, the device voltage decreases, and the spectral area increases. When the size of the N electrode window is reduced from 5µm×17µm to 5µm×10µm, although the voltage of the device has increased, the luminous efficiency under the rated current of 150mA is increased by 4.9%. When the distance between the P electrode windows is increased from 20µm to 30µm, the voltage of the device will increase, but the luminous efficiency under the test current of 150mA is increased by 7.2%. Although the size of the P electrode window has little effect on the light-emitting performance of the device, increasing the size of the P electrode window to a certain extent can improve the electrical characteristics of the device. The best structure obtained in this paper to improve the light-emitting performance of the device is: the size of the N electrode window is 5µm×10µm, and the spacing is 37µm; the size of the P electrode window is 15µm×5µm, and the spacing is 30µm.