外延Al0.77Sc0.23N SAW和Lamb波谐振器

Mingyo Park, A. Ansari
{"title":"外延Al0.77Sc0.23N SAW和Lamb波谐振器","authors":"Mingyo Park, A. Ansari","doi":"10.1109/IFCS-ISAF41089.2020.9234850","DOIUrl":null,"url":null,"abstract":"This work reports on surface acoustic wave (SAW) and the super high frequency (SHF) Lamb wave resonators (LWR) with reflective gratings based on 400 nm-thick epitaxial Aluminum Scandium Nitride (AlScN) piezoelectric films. The films are grown on silicon substrates by molecular beam epitaxy (MBE), with $\\text{Sc}/(\\mathrm{A}1+\\text{Sc})$ ratio of 23%, which is the highest Sc concentration, reported to date for BAW/SAW resonators based on AlN epitaxial films. We first demonstrate a SAW resonator, with reflective gratings. The Si substrate of the SAW resonator is then removed from the backside, to form a suspended 400 nm-thick plate. A floating bottom metal electrode is deposited from the backside to enhance the effective electromechanical coefficient (${k_{eff}}^{2}$) of the Lamb wave resonators. A high ${k_{eff}}^{2}$ value of 7.45% at a resonant frequency of 4.92 GHz is reported in this work, yielding ${k_{eff}}^{2}\\times Q_{m}$ of 7.3. To the authors' knowledge, this work marks the highest ${k_{eff}}^{2}$ achieved for >3GHz AlN-based Lamb wave resonators to date.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Epitaxial Al0.77Sc0.23N SAW and Lamb Wave Resonators\",\"authors\":\"Mingyo Park, A. Ansari\",\"doi\":\"10.1109/IFCS-ISAF41089.2020.9234850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports on surface acoustic wave (SAW) and the super high frequency (SHF) Lamb wave resonators (LWR) with reflective gratings based on 400 nm-thick epitaxial Aluminum Scandium Nitride (AlScN) piezoelectric films. The films are grown on silicon substrates by molecular beam epitaxy (MBE), with $\\\\text{Sc}/(\\\\mathrm{A}1+\\\\text{Sc})$ ratio of 23%, which is the highest Sc concentration, reported to date for BAW/SAW resonators based on AlN epitaxial films. We first demonstrate a SAW resonator, with reflective gratings. The Si substrate of the SAW resonator is then removed from the backside, to form a suspended 400 nm-thick plate. A floating bottom metal electrode is deposited from the backside to enhance the effective electromechanical coefficient (${k_{eff}}^{2}$) of the Lamb wave resonators. A high ${k_{eff}}^{2}$ value of 7.45% at a resonant frequency of 4.92 GHz is reported in this work, yielding ${k_{eff}}^{2}\\\\times Q_{m}$ of 7.3. To the authors' knowledge, this work marks the highest ${k_{eff}}^{2}$ achieved for >3GHz AlN-based Lamb wave resonators to date.\",\"PeriodicalId\":6872,\"journal\":{\"name\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"volume\":\"2 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文报道了基于400 nm厚氮化铝钪(AlScN)外延压电薄膜的反射光栅表面声波(SAW)和超高频Lamb波谐振器(LWR)。通过分子束外延(MBE)在硅衬底上生长薄膜,$\text{Sc}/(\ mathm {A}1+\text{Sc})$的Sc浓度为23%,这是迄今为止报道的基于AlN外延薄膜的BAW/SAW谐振器的最高Sc浓度。我们首先演示了一个带有反射光栅的SAW谐振器。然后从背面去除SAW谐振器的Si衬底,形成一个悬浮的400nm厚的板。为了提高兰姆波谐振器的有效机电系数(${k_{eff}}^{2}$),在兰姆波谐振器的背面沉积了一个浮底金属电极。在4.92 GHz的谐振频率下,${k_{eff}}^{2}$的高值为7.45%,得到${k_{eff}}^{2}\乘以Q_{m}$为7.3。据作者所知,这项工作标志着迄今为止>3GHz铝基兰姆波谐振器实现的最高${k_{eff}}^{2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epitaxial Al0.77Sc0.23N SAW and Lamb Wave Resonators
This work reports on surface acoustic wave (SAW) and the super high frequency (SHF) Lamb wave resonators (LWR) with reflective gratings based on 400 nm-thick epitaxial Aluminum Scandium Nitride (AlScN) piezoelectric films. The films are grown on silicon substrates by molecular beam epitaxy (MBE), with $\text{Sc}/(\mathrm{A}1+\text{Sc})$ ratio of 23%, which is the highest Sc concentration, reported to date for BAW/SAW resonators based on AlN epitaxial films. We first demonstrate a SAW resonator, with reflective gratings. The Si substrate of the SAW resonator is then removed from the backside, to form a suspended 400 nm-thick plate. A floating bottom metal electrode is deposited from the backside to enhance the effective electromechanical coefficient (${k_{eff}}^{2}$) of the Lamb wave resonators. A high ${k_{eff}}^{2}$ value of 7.45% at a resonant frequency of 4.92 GHz is reported in this work, yielding ${k_{eff}}^{2}\times Q_{m}$ of 7.3. To the authors' knowledge, this work marks the highest ${k_{eff}}^{2}$ achieved for >3GHz AlN-based Lamb wave resonators to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信