{"title":"同轴对转螺旋桨的历史发展","authors":"A. Filippone","doi":"10.1017/aer.2022.92","DOIUrl":null,"url":null,"abstract":"\n We review the development of the contra-rotating propellers from the origins to the present. Initially, these systems were proposed to increase speed, then to increase propulsive efficiency, and thus reduce fuel burn. Ultimately, they hit another environmental limit: too much noise. Acoustics has been in fact the main focus of the development in the past 30 years. Pioneering work done across countries demonstrated several unique features of this propulsor. Various embodiments are available, namely contra-rotating, counter-rotating, co-axial, tandem, open rotor and prop-fans, collectively named contra-rotating propellers. This review only considers concepts that have been applied to real aircraft, prototypes that are known to have been flight tested (about 70 vehicles), or representative laboratory models. Five classifications are proposed: pioneers (before 1940), golden years (1940–1950), Western airplanes (1950s onwards), Soviet-Russian airplanes (1950s onwards) and modern developments (1980s onwards). Selected experimental aircraft and laboratory concepts are mentioned, where these appear to advance the state-of-the-art. Power plants evolved from internal combustion engines to the modern gas turbine engines requiring new solutions. Engine layouts and propulsion configurations are analysed where appropriate. It is concluded that propulsive efficiency can only be achieved at a cost of multiple engineering problems, some of which remain unsolved.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Historical development of the coaxial contra-rotating propeller\",\"authors\":\"A. Filippone\",\"doi\":\"10.1017/aer.2022.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We review the development of the contra-rotating propellers from the origins to the present. Initially, these systems were proposed to increase speed, then to increase propulsive efficiency, and thus reduce fuel burn. Ultimately, they hit another environmental limit: too much noise. Acoustics has been in fact the main focus of the development in the past 30 years. Pioneering work done across countries demonstrated several unique features of this propulsor. Various embodiments are available, namely contra-rotating, counter-rotating, co-axial, tandem, open rotor and prop-fans, collectively named contra-rotating propellers. This review only considers concepts that have been applied to real aircraft, prototypes that are known to have been flight tested (about 70 vehicles), or representative laboratory models. Five classifications are proposed: pioneers (before 1940), golden years (1940–1950), Western airplanes (1950s onwards), Soviet-Russian airplanes (1950s onwards) and modern developments (1980s onwards). Selected experimental aircraft and laboratory concepts are mentioned, where these appear to advance the state-of-the-art. Power plants evolved from internal combustion engines to the modern gas turbine engines requiring new solutions. Engine layouts and propulsion configurations are analysed where appropriate. It is concluded that propulsive efficiency can only be achieved at a cost of multiple engineering problems, some of which remain unsolved.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2022.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2022.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Historical development of the coaxial contra-rotating propeller
We review the development of the contra-rotating propellers from the origins to the present. Initially, these systems were proposed to increase speed, then to increase propulsive efficiency, and thus reduce fuel burn. Ultimately, they hit another environmental limit: too much noise. Acoustics has been in fact the main focus of the development in the past 30 years. Pioneering work done across countries demonstrated several unique features of this propulsor. Various embodiments are available, namely contra-rotating, counter-rotating, co-axial, tandem, open rotor and prop-fans, collectively named contra-rotating propellers. This review only considers concepts that have been applied to real aircraft, prototypes that are known to have been flight tested (about 70 vehicles), or representative laboratory models. Five classifications are proposed: pioneers (before 1940), golden years (1940–1950), Western airplanes (1950s onwards), Soviet-Russian airplanes (1950s onwards) and modern developments (1980s onwards). Selected experimental aircraft and laboratory concepts are mentioned, where these appear to advance the state-of-the-art. Power plants evolved from internal combustion engines to the modern gas turbine engines requiring new solutions. Engine layouts and propulsion configurations are analysed where appropriate. It is concluded that propulsive efficiency can only be achieved at a cost of multiple engineering problems, some of which remain unsolved.