{"title":"音频和音乐信号的分类与分离","authors":"A. Al-Shoshan","doi":"10.5772/intechopen.94940","DOIUrl":null,"url":null,"abstract":"This chapter addresses the topic of classification and separation of audio and music signals. It is a very important and a challenging research area. The importance of classification process of a stream of sounds come up for the sake of building two different libraries: speech library and music library. However, the separation process is needed sometimes in a cocktail-party problem to separate speech from music and remove the undesired one. In this chapter, some existed algorithms for the classification process and the separation process are presented and discussed thoroughly. The classification algorithms will be divided into three categories. The first category includes most of the real time approaches. The second category includes most of the frequency domain approaches. However, the third category introduces some of the approaches in the time-frequency distribution. The approaches of time domain discussed in this chapter are the short-time energy (STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with positive derivative, the neural networks, and the roll-off variance. The approaches of the frequency spectrum are specifically the roll-off of the spectrum, the spectral centroid and the variance of the spectral centroid, the spectral flux and the variance of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency domain approaches have not been yet tested thoroughly in the process of classification and separation of audio and music signals. Therefore, the spectrogram and the evolutionary spectrum will be introduced and discussed. In addition, some algorithms for separation and segregation of music and audio signals, like the independent Component Analysis, the pitch cancelation and the artificial neural networks will be introduced.","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"58 2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Separation of Audio and Music Signals\",\"authors\":\"A. Al-Shoshan\",\"doi\":\"10.5772/intechopen.94940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter addresses the topic of classification and separation of audio and music signals. It is a very important and a challenging research area. The importance of classification process of a stream of sounds come up for the sake of building two different libraries: speech library and music library. However, the separation process is needed sometimes in a cocktail-party problem to separate speech from music and remove the undesired one. In this chapter, some existed algorithms for the classification process and the separation process are presented and discussed thoroughly. The classification algorithms will be divided into three categories. The first category includes most of the real time approaches. The second category includes most of the frequency domain approaches. However, the third category introduces some of the approaches in the time-frequency distribution. The approaches of time domain discussed in this chapter are the short-time energy (STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with positive derivative, the neural networks, and the roll-off variance. The approaches of the frequency spectrum are specifically the roll-off of the spectrum, the spectral centroid and the variance of the spectral centroid, the spectral flux and the variance of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency domain approaches have not been yet tested thoroughly in the process of classification and separation of audio and music signals. Therefore, the spectrogram and the evolutionary spectrum will be introduced and discussed. In addition, some algorithms for separation and segregation of music and audio signals, like the independent Component Analysis, the pitch cancelation and the artificial neural networks will be introduced.\",\"PeriodicalId\":48501,\"journal\":{\"name\":\"International Journal of Multimedia Information Retrieval\",\"volume\":\"58 2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multimedia Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.94940\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multimedia Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5772/intechopen.94940","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Classification and Separation of Audio and Music Signals
This chapter addresses the topic of classification and separation of audio and music signals. It is a very important and a challenging research area. The importance of classification process of a stream of sounds come up for the sake of building two different libraries: speech library and music library. However, the separation process is needed sometimes in a cocktail-party problem to separate speech from music and remove the undesired one. In this chapter, some existed algorithms for the classification process and the separation process are presented and discussed thoroughly. The classification algorithms will be divided into three categories. The first category includes most of the real time approaches. The second category includes most of the frequency domain approaches. However, the third category introduces some of the approaches in the time-frequency distribution. The approaches of time domain discussed in this chapter are the short-time energy (STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with positive derivative, the neural networks, and the roll-off variance. The approaches of the frequency spectrum are specifically the roll-off of the spectrum, the spectral centroid and the variance of the spectral centroid, the spectral flux and the variance of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency domain approaches have not been yet tested thoroughly in the process of classification and separation of audio and music signals. Therefore, the spectrogram and the evolutionary spectrum will be introduced and discussed. In addition, some algorithms for separation and segregation of music and audio signals, like the independent Component Analysis, the pitch cancelation and the artificial neural networks will be introduced.
期刊介绍:
Aims and Scope
The International Journal of Multimedia Information Retrieval (IJMIR) is a scholarly archival journal publishing original, peer-reviewed research contributions. Its editorial board strives to present the most important research results in areas within the field of multimedia information retrieval. Core areas include exploration, search, and mining in general collections of multimedia consisting of information from the WWW to scientific imaging to personal archives. Comprehensive review and survey papers that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
Relevant topics include
Image and video retrieval - theory, algorithms, and systems
Social media interaction and retrieval - collaborative filtering, social voting and ranking
Music and audio retrieval - theory, algorithms, and systems
Scientific and Bio-imaging - MRI, X-ray, ultrasound imaging analysis and retrieval
Semantic learning - visual concept detection, object recognition, and tag learning
Exploration of media archives - browsing, experiential computing
Interfaces - multimedia exploration, visualization, query and retrieval
Multimedia mining - life logs, WWW media mining, pervasive media analysis
Interactive search - interactive learning and relevance feedback in multimedia retrieval
Distributed and high performance media search - efficient and very large scale search
Applications - preserving cultural heritage, 3D graphics models, etc.
Editorial Policies:
We aim for a fast decision time (less than 4 months for the initial decision)
There are no page charges in IJMIR.
Papers are published on line in advance of print publication.
Academic, industrial researchers, and practitioners involved with multimedia search, exploration, and mining will find IJMIR to be an essential source for important results in the field.