Konstantin Tscherkaschin, Theodor Hillebrand, Maike Taddiken, S. Paul, D. Peters-Drolshagen
{"title":"耐温度和耐老化逆变器,在65nm大块CMOS工艺中实现数字电路设计的鲁棒和可靠时间","authors":"Konstantin Tscherkaschin, Theodor Hillebrand, Maike Taddiken, S. Paul, D. Peters-Drolshagen","doi":"10.1109/IOLTS.2016.7604683","DOIUrl":null,"url":null,"abstract":"Inverters are one of the most basic logic blocks and exhibit a strong temperature dependency. Additionally, degradation in CMOS transistors affects the performance of circuits over time and is strongly dependent on temperature during circuit operation. In order to design robust and reliable ring oscillators and time to digital converters, both temperature dependencies have to be considered. This work introduces a circuit design for a robust and resilient inverter and an analysis on its temperature-dependent aging characteristic. The implemented inverter is driven by a common-source amplifier to achieve high robustness against temperature variation and aging effects. Based on this, circuit designs for a ring oscillator and an inverter-based delay line for a time to digital converter has been implemented. The results show that the deviation of the delay for an inverter can be minimized from 13.2% for conventional inverter design to less than 2% for the temperature-and aging-resistant design over a wide temperature range from -40° C to 150° C and a stress time of ten years.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"77 1","pages":"121-125"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temperature- and aging-resistant inverter for robust and reliable time to digital circuit designs in a 65nm bulk CMOS process\",\"authors\":\"Konstantin Tscherkaschin, Theodor Hillebrand, Maike Taddiken, S. Paul, D. Peters-Drolshagen\",\"doi\":\"10.1109/IOLTS.2016.7604683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverters are one of the most basic logic blocks and exhibit a strong temperature dependency. Additionally, degradation in CMOS transistors affects the performance of circuits over time and is strongly dependent on temperature during circuit operation. In order to design robust and reliable ring oscillators and time to digital converters, both temperature dependencies have to be considered. This work introduces a circuit design for a robust and resilient inverter and an analysis on its temperature-dependent aging characteristic. The implemented inverter is driven by a common-source amplifier to achieve high robustness against temperature variation and aging effects. Based on this, circuit designs for a ring oscillator and an inverter-based delay line for a time to digital converter has been implemented. The results show that the deviation of the delay for an inverter can be minimized from 13.2% for conventional inverter design to less than 2% for the temperature-and aging-resistant design over a wide temperature range from -40° C to 150° C and a stress time of ten years.\",\"PeriodicalId\":6580,\"journal\":{\"name\":\"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"volume\":\"77 1\",\"pages\":\"121-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2016.7604683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature- and aging-resistant inverter for robust and reliable time to digital circuit designs in a 65nm bulk CMOS process
Inverters are one of the most basic logic blocks and exhibit a strong temperature dependency. Additionally, degradation in CMOS transistors affects the performance of circuits over time and is strongly dependent on temperature during circuit operation. In order to design robust and reliable ring oscillators and time to digital converters, both temperature dependencies have to be considered. This work introduces a circuit design for a robust and resilient inverter and an analysis on its temperature-dependent aging characteristic. The implemented inverter is driven by a common-source amplifier to achieve high robustness against temperature variation and aging effects. Based on this, circuit designs for a ring oscillator and an inverter-based delay line for a time to digital converter has been implemented. The results show that the deviation of the delay for an inverter can be minimized from 13.2% for conventional inverter design to less than 2% for the temperature-and aging-resistant design over a wide temperature range from -40° C to 150° C and a stress time of ten years.