{"title":"基于队列模型的容器云动态可扩展性","authors":"Ankit Srivastava, Narander Kumar","doi":"10.14569/ijacsa.2023.0140150","DOIUrl":null,"url":null,"abstract":"—Cloud computing has become a growing technology and has received wide acceptance in the scientific community and large organizations like government and industry. Due to the highly complex nature of VM virtualization, lightweight containers have gained wide popularity, and techniques to provision the resources to these containers have drawn researchers towards themselves. The models or algorithms that provide dynamic scalability which meets the demand of high performance and QoS utilizing the minimum number of resources for the containerized cloud have been lacking in the literature. The dynamic scalability facilitates the cloud services in offering timely, on-demand, and computing resources having the characteristic of dynamic adjustment to the end users. The manuscript has presented a technique which has exploited the queuing model to perform the dynamic scalability and scale the virtual resources of the containers while reducing the finances and meeting up the user’s Service Level Agreement (SLA). The paper aims in improving the usage of virtual resources and satisfy the SLA requirements in terms of response time, drop rate, system throughput, and the number of containers. The work has been simulated using Cloudsim and has been compared with the existing work and the analysis has shown that the proposed work has performed better.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Queueing Model based Dynamic Scalability for Containerized Cloud\",\"authors\":\"Ankit Srivastava, Narander Kumar\",\"doi\":\"10.14569/ijacsa.2023.0140150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Cloud computing has become a growing technology and has received wide acceptance in the scientific community and large organizations like government and industry. Due to the highly complex nature of VM virtualization, lightweight containers have gained wide popularity, and techniques to provision the resources to these containers have drawn researchers towards themselves. The models or algorithms that provide dynamic scalability which meets the demand of high performance and QoS utilizing the minimum number of resources for the containerized cloud have been lacking in the literature. The dynamic scalability facilitates the cloud services in offering timely, on-demand, and computing resources having the characteristic of dynamic adjustment to the end users. The manuscript has presented a technique which has exploited the queuing model to perform the dynamic scalability and scale the virtual resources of the containers while reducing the finances and meeting up the user’s Service Level Agreement (SLA). The paper aims in improving the usage of virtual resources and satisfy the SLA requirements in terms of response time, drop rate, system throughput, and the number of containers. The work has been simulated using Cloudsim and has been compared with the existing work and the analysis has shown that the proposed work has performed better.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Queueing Model based Dynamic Scalability for Containerized Cloud
—Cloud computing has become a growing technology and has received wide acceptance in the scientific community and large organizations like government and industry. Due to the highly complex nature of VM virtualization, lightweight containers have gained wide popularity, and techniques to provision the resources to these containers have drawn researchers towards themselves. The models or algorithms that provide dynamic scalability which meets the demand of high performance and QoS utilizing the minimum number of resources for the containerized cloud have been lacking in the literature. The dynamic scalability facilitates the cloud services in offering timely, on-demand, and computing resources having the characteristic of dynamic adjustment to the end users. The manuscript has presented a technique which has exploited the queuing model to perform the dynamic scalability and scale the virtual resources of the containers while reducing the finances and meeting up the user’s Service Level Agreement (SLA). The paper aims in improving the usage of virtual resources and satisfy the SLA requirements in terms of response time, drop rate, system throughput, and the number of containers. The work has been simulated using Cloudsim and has been compared with the existing work and the analysis has shown that the proposed work has performed better.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications