非外延GaAs异质结纳米线太阳能电池(PVSC)

Phillip Jahelka, H. Atwater
{"title":"非外延GaAs异质结纳米线太阳能电池(PVSC)","authors":"Phillip Jahelka, H. Atwater","doi":"10.1109/PVSC40753.2019.9198966","DOIUrl":null,"url":null,"abstract":"The efficiency of substrate-removed GaAs nanowire solar cells can be increased to over 32% by borrowing processes and materials from GaAs MOSFETs and perovskite photovoltaics. Photogenerated carriers fundamentally limit the performance of off-wafer homojunction devices to less than 15% efficiency by creating low resistance pathways for minority carriers to recombine at ohmic contacts. We report the results of coupled optoelectronic device physics simulations of GaAs nanowire homojunction solar cells and GaAs nanocone heterojunction solar cells where SnO2 and CuSCN are used for charge carrier collection. Our simulations include realistic recombination models for bulk and surface recombination. We find the optimal design is a radial junction with moderately p-type GaAs. Densities of states previously demonstrated in GaAs MOSFETs enable efficiencies greater than 30%.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"87 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Epitaxial GaAs Heterojunction Nanowire Solar Cells (PVSC)\",\"authors\":\"Phillip Jahelka, H. Atwater\",\"doi\":\"10.1109/PVSC40753.2019.9198966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of substrate-removed GaAs nanowire solar cells can be increased to over 32% by borrowing processes and materials from GaAs MOSFETs and perovskite photovoltaics. Photogenerated carriers fundamentally limit the performance of off-wafer homojunction devices to less than 15% efficiency by creating low resistance pathways for minority carriers to recombine at ohmic contacts. We report the results of coupled optoelectronic device physics simulations of GaAs nanowire homojunction solar cells and GaAs nanocone heterojunction solar cells where SnO2 and CuSCN are used for charge carrier collection. Our simulations include realistic recombination models for bulk and surface recombination. We find the optimal design is a radial junction with moderately p-type GaAs. Densities of states previously demonstrated in GaAs MOSFETs enable efficiencies greater than 30%.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"87 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过借鉴GaAs mosfet和钙钛矿光伏的工艺和材料,去除衬底的GaAs纳米线太阳能电池的效率可以提高到32%以上。光生载流子通过为少数载流子在欧姆接触处重新组合创造低电阻通路,从根本上限制了晶圆外均结器件的性能,使其效率低于15%。本文报道了用SnO2和CuSCN收集载流子的GaAs纳米线异质结太阳能电池和GaAs纳米锥异质结太阳能电池的耦合光电器件物理模拟结果。我们的模拟包括实际的块体和表面复合模型。我们发现最优的设计是采用中等p型砷化镓的径向结。先前在GaAs mosfet中演示的态密度使效率大于30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Epitaxial GaAs Heterojunction Nanowire Solar Cells (PVSC)
The efficiency of substrate-removed GaAs nanowire solar cells can be increased to over 32% by borrowing processes and materials from GaAs MOSFETs and perovskite photovoltaics. Photogenerated carriers fundamentally limit the performance of off-wafer homojunction devices to less than 15% efficiency by creating low resistance pathways for minority carriers to recombine at ohmic contacts. We report the results of coupled optoelectronic device physics simulations of GaAs nanowire homojunction solar cells and GaAs nanocone heterojunction solar cells where SnO2 and CuSCN are used for charge carrier collection. Our simulations include realistic recombination models for bulk and surface recombination. We find the optimal design is a radial junction with moderately p-type GaAs. Densities of states previously demonstrated in GaAs MOSFETs enable efficiencies greater than 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信