静态和极低频电磁场对神经系统的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Lai
{"title":"静态和极低频电磁场对神经系统的影响","authors":"H. Lai","doi":"10.1080/15368378.2022.2064489","DOIUrl":null,"url":null,"abstract":"ABSTRACT This is a review of studies on the neurological effects of static/extremely-low frequency (ELF) electromagnetic fields (EMF). The review is mainly on research carried out in the last two decades. There are studies that showed effects on various neurotransmitters, including NMDA, serotonin, dopamine, endogenous opioids, etc. Each of these transmitters plays different critical roles on behavior and brain functions. Studies on behavioral effects of static/ELF EMF bear out these connections. Static/ELF EMF-induced behavorial and pathological effects, such as locomotor activity, memory and learning deficits, and neurological diseases (Alzheimer’s, Parkinson’s disease, Huntinton’s diseases and atropical lateral scleroses, etc.) are discussed. Static/ELF EMF exposure has also been shown to have beneficial effects on functional deficits and progression of some neurological diseases. These fields provide a non-invasive treatment or treatment-adjuvant for these detrimental neurological conditions. Results suggest that free radicals, both reactive oxygen species and reactive nitric species could be involved. Depending on the conditions of exposure, either harmful or beneficial effects could result. It is important to carry out further investigation to identify these conditions. However, Caution should be taken to extrapolate the experimental data to human exposure, since higher field intensites than environmental levels were used in most laboratory research.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neurological effects of static and extremely-low frequency electromagnetic fields\",\"authors\":\"H. Lai\",\"doi\":\"10.1080/15368378.2022.2064489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This is a review of studies on the neurological effects of static/extremely-low frequency (ELF) electromagnetic fields (EMF). The review is mainly on research carried out in the last two decades. There are studies that showed effects on various neurotransmitters, including NMDA, serotonin, dopamine, endogenous opioids, etc. Each of these transmitters plays different critical roles on behavior and brain functions. Studies on behavioral effects of static/ELF EMF bear out these connections. Static/ELF EMF-induced behavorial and pathological effects, such as locomotor activity, memory and learning deficits, and neurological diseases (Alzheimer’s, Parkinson’s disease, Huntinton’s diseases and atropical lateral scleroses, etc.) are discussed. Static/ELF EMF exposure has also been shown to have beneficial effects on functional deficits and progression of some neurological diseases. These fields provide a non-invasive treatment or treatment-adjuvant for these detrimental neurological conditions. Results suggest that free radicals, both reactive oxygen species and reactive nitric species could be involved. Depending on the conditions of exposure, either harmful or beneficial effects could result. It is important to carry out further investigation to identify these conditions. However, Caution should be taken to extrapolate the experimental data to human exposure, since higher field intensites than environmental levels were used in most laboratory research.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2064489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2064489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文综述了静态/极低频(ELF)电磁场(EMF)对神经系统的影响。这篇综述主要是对过去二十年进行的研究。有研究表明对多种神经递质有影响,包括NMDA、血清素、多巴胺、内源性阿片类药物等。每一种递质在行为和大脑功能中起着不同的关键作用。对静电/极低频电磁场行为影响的研究证实了这些联系。静态/极低频电磁场诱导的行为和病理效应,如运动活动,记忆和学习缺陷,以及神经系统疾病(阿尔茨海默病,帕金森病,亨廷顿病和热带侧索硬化症等)进行了讨论。静态/极低频电磁场暴露也被证明对某些神经系统疾病的功能缺陷和进展有有益影响。这些电场为这些有害的神经系统疾病提供了一种非侵入性治疗或辅助治疗。结果表明,自由基、活性氧和活性氮可能参与其中。根据暴露条件的不同,可能产生有害或有益的影响。重要的是要进行进一步的调查,以确定这些条件。然而,应谨慎地将实验数据推断为人类接触,因为在大多数实验室研究中使用的现场强度高于环境水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurological effects of static and extremely-low frequency electromagnetic fields
ABSTRACT This is a review of studies on the neurological effects of static/extremely-low frequency (ELF) electromagnetic fields (EMF). The review is mainly on research carried out in the last two decades. There are studies that showed effects on various neurotransmitters, including NMDA, serotonin, dopamine, endogenous opioids, etc. Each of these transmitters plays different critical roles on behavior and brain functions. Studies on behavioral effects of static/ELF EMF bear out these connections. Static/ELF EMF-induced behavorial and pathological effects, such as locomotor activity, memory and learning deficits, and neurological diseases (Alzheimer’s, Parkinson’s disease, Huntinton’s diseases and atropical lateral scleroses, etc.) are discussed. Static/ELF EMF exposure has also been shown to have beneficial effects on functional deficits and progression of some neurological diseases. These fields provide a non-invasive treatment or treatment-adjuvant for these detrimental neurological conditions. Results suggest that free radicals, both reactive oxygen species and reactive nitric species could be involved. Depending on the conditions of exposure, either harmful or beneficial effects could result. It is important to carry out further investigation to identify these conditions. However, Caution should be taken to extrapolate the experimental data to human exposure, since higher field intensites than environmental levels were used in most laboratory research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信