{"title":"封闭Rickart模块","authors":"Ghaleb Ahmed","doi":"10.30526/2017.IHSCICONF.1818","DOIUrl":null,"url":null,"abstract":"Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coclosed Rickart Modules\",\"authors\":\"Ghaleb Ahmed\",\"doi\":\"10.30526/2017.IHSCICONF.1818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.\",\"PeriodicalId\":13236,\"journal\":{\"name\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/2017.IHSCICONF.1818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/2017.IHSCICONF.1818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.