聚乙烯醇原位酮化制备弹性水凝胶膜,纳米ZnO掺杂聚乙烯醇薄膜作为抗菌表面

IF 2.5 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS
A. Özbal, Z. Dikmen, V. Bütün
{"title":"聚乙烯醇原位酮化制备弹性水凝胶膜,纳米ZnO掺杂聚乙烯醇薄膜作为抗菌表面","authors":"A. Özbal, Z. Dikmen, V. Bütün","doi":"10.1080/00914037.2023.2250048","DOIUrl":null,"url":null,"abstract":"Abstract Cross-linked and flexible poly(vinyl acetone ketal) (PV-A-K) films have been prepared as a result of ketalization reaction and monolith formation of poly(vinyl alcohol) (PVA), which has the feature of forming films quickly and is frequently used in biological fields. In this novel method, flexible PV-A-K films have been produced simply and in a short time accompanied by monolith formation without any catalyst in acetone. The effect of acetone ratio on the physical properties (i.e., swelling and mechanical properties) of such formations has been investigated to reveal significant influences of it. In addition, zinc oxide (ZnO) nanoparticles synthesized via the solvothermal method have been doped into PV-A-K films during film preparation. The prepared PV-A-K and ZnO doped PV-A-K films have been characterized with SEM, XRD, and FT-IR. Their mechanical properties have been investigated with a universal mechanical test machine. The acetone ratio is quite effective both on the porosity and stress/strain properties of the films. Antibacterial activities of the films are evaluated against four different strains (E. coli, S. aureus, P. aeruginosa, and E. faecalis) via the disk diffusion method. The films are selectively effective against S. aureus. These highly flexible and elastic films have great potential for biomedical applications, wound dressing, and antibacterial surface preparation. Graphical Abstract","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"31 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of elastic hydrogel films via in-situ ketalization of Poly(vinyl alcohol) and ZnO nanoparticle doped Poly(vinyl ketal) films as antibacterial surface\",\"authors\":\"A. Özbal, Z. Dikmen, V. Bütün\",\"doi\":\"10.1080/00914037.2023.2250048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cross-linked and flexible poly(vinyl acetone ketal) (PV-A-K) films have been prepared as a result of ketalization reaction and monolith formation of poly(vinyl alcohol) (PVA), which has the feature of forming films quickly and is frequently used in biological fields. In this novel method, flexible PV-A-K films have been produced simply and in a short time accompanied by monolith formation without any catalyst in acetone. The effect of acetone ratio on the physical properties (i.e., swelling and mechanical properties) of such formations has been investigated to reveal significant influences of it. In addition, zinc oxide (ZnO) nanoparticles synthesized via the solvothermal method have been doped into PV-A-K films during film preparation. The prepared PV-A-K and ZnO doped PV-A-K films have been characterized with SEM, XRD, and FT-IR. Their mechanical properties have been investigated with a universal mechanical test machine. The acetone ratio is quite effective both on the porosity and stress/strain properties of the films. Antibacterial activities of the films are evaluated against four different strains (E. coli, S. aureus, P. aeruginosa, and E. faecalis) via the disk diffusion method. The films are selectively effective against S. aureus. These highly flexible and elastic films have great potential for biomedical applications, wound dressing, and antibacterial surface preparation. Graphical Abstract\",\"PeriodicalId\":14203,\"journal\":{\"name\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00914037.2023.2250048\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00914037.2023.2250048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of elastic hydrogel films via in-situ ketalization of Poly(vinyl alcohol) and ZnO nanoparticle doped Poly(vinyl ketal) films as antibacterial surface
Abstract Cross-linked and flexible poly(vinyl acetone ketal) (PV-A-K) films have been prepared as a result of ketalization reaction and monolith formation of poly(vinyl alcohol) (PVA), which has the feature of forming films quickly and is frequently used in biological fields. In this novel method, flexible PV-A-K films have been produced simply and in a short time accompanied by monolith formation without any catalyst in acetone. The effect of acetone ratio on the physical properties (i.e., swelling and mechanical properties) of such formations has been investigated to reveal significant influences of it. In addition, zinc oxide (ZnO) nanoparticles synthesized via the solvothermal method have been doped into PV-A-K films during film preparation. The prepared PV-A-K and ZnO doped PV-A-K films have been characterized with SEM, XRD, and FT-IR. Their mechanical properties have been investigated with a universal mechanical test machine. The acetone ratio is quite effective both on the porosity and stress/strain properties of the films. Antibacterial activities of the films are evaluated against four different strains (E. coli, S. aureus, P. aeruginosa, and E. faecalis) via the disk diffusion method. The films are selectively effective against S. aureus. These highly flexible and elastic films have great potential for biomedical applications, wound dressing, and antibacterial surface preparation. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Polymeric Materials and Polymeric Biomaterials
International Journal of Polymeric Materials and Polymeric Biomaterials Chemical Engineering-General Chemical Engineering
CiteScore
8.00
自引率
3.10%
发文量
97
审稿时长
3.3 months
期刊介绍: International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信