{"title":"测量随频率和温度变化的食品材料介电常数","authors":"S. Nelson, P. G. Bartley","doi":"10.1109/IMTC.2001.928225","DOIUrl":null,"url":null,"abstract":"An open-ended coaxial-line probe was used with sample temperature control equipment designed for use with the probe to measure permittivities of some liquid, semisolid, and pulverized food materials as a function of frequency and temperature. Graphical data for the dielectric constant and loss factor of homogenized macaroni and cheese, ground whole-wheat flour, and apple juice illustrate the diverse frequency- and temperature-dependent behavior of food materials and the need for measurements when reliable permittivity data are required.","PeriodicalId":68878,"journal":{"name":"Journal of Measurement Science and Instrumentation","volume":"36 1","pages":"975-978 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Measuring frequency- and temperature-dependent permittivities of food materials\",\"authors\":\"S. Nelson, P. G. Bartley\",\"doi\":\"10.1109/IMTC.2001.928225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An open-ended coaxial-line probe was used with sample temperature control equipment designed for use with the probe to measure permittivities of some liquid, semisolid, and pulverized food materials as a function of frequency and temperature. Graphical data for the dielectric constant and loss factor of homogenized macaroni and cheese, ground whole-wheat flour, and apple juice illustrate the diverse frequency- and temperature-dependent behavior of food materials and the need for measurements when reliable permittivity data are required.\",\"PeriodicalId\":68878,\"journal\":{\"name\":\"Journal of Measurement Science and Instrumentation\",\"volume\":\"36 1\",\"pages\":\"975-978 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Measurement Science and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2001.928225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurement Science and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2001.928225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring frequency- and temperature-dependent permittivities of food materials
An open-ended coaxial-line probe was used with sample temperature control equipment designed for use with the probe to measure permittivities of some liquid, semisolid, and pulverized food materials as a function of frequency and temperature. Graphical data for the dielectric constant and loss factor of homogenized macaroni and cheese, ground whole-wheat flour, and apple juice illustrate the diverse frequency- and temperature-dependent behavior of food materials and the need for measurements when reliable permittivity data are required.