{"title":"权值为2r的码字所组成的不可分解2r可分码的分类","authors":"Sascha Kurz","doi":"10.15495/EPUB_UBT_00005157","DOIUrl":null,"url":null,"abstract":"We classify indecomposable binary linear codes whose weights of the codewords are divisible by $2^r$ for some integer $r$ and that are spanned by the set of minimum weight codewords.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of indecomposable 2 r -divisible codes spanned by by codewords of weight 2 r\",\"authors\":\"Sascha Kurz\",\"doi\":\"10.15495/EPUB_UBT_00005157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify indecomposable binary linear codes whose weights of the codewords are divisible by $2^r$ for some integer $r$ and that are spanned by the set of minimum weight codewords.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15495/EPUB_UBT_00005157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15495/EPUB_UBT_00005157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of indecomposable 2 r -divisible codes spanned by by codewords of weight 2 r
We classify indecomposable binary linear codes whose weights of the codewords are divisible by $2^r$ for some integer $r$ and that are spanned by the set of minimum weight codewords.