{"title":"基于fpga实现浮点处理元件,用于设计高效FIR滤波器","authors":"Tintu Mary John, Shanty Chacko","doi":"10.1049/cdt2.12010","DOIUrl":null,"url":null,"abstract":"<p>Numerous applications based on very large scale intergration (VLSI) architecture suffer from large size components that lead to an error in the design of the filter during the stages of floating point arithmetic. Hence, it is necessary to change the architectural model that increases the design complexity and the time delay effect. The issue encountered in the VLSI architectures for finite impulse response (FIR) filter is the increased number of components, especially delay elements. For the VLSI architecture reconfigured with reduced register usage, this article provides the floating point processing element (FPPE) implementation with Cross-Folded Shifting. The proposed FIR filter system reduces the number of components in the circuit which increases the complexity and high delay rate in the logical operation. The system has a comparatively reduced delay rate and power consumption. Hence, an efficient fast architecture based on the FPPE method is developed in this paper.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 4","pages":"296-301"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12010","citationCount":"3","resultStr":"{\"title\":\"FPGA-based implementation of floating point processing element for the design of efficient FIR filters\",\"authors\":\"Tintu Mary John, Shanty Chacko\",\"doi\":\"10.1049/cdt2.12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous applications based on very large scale intergration (VLSI) architecture suffer from large size components that lead to an error in the design of the filter during the stages of floating point arithmetic. Hence, it is necessary to change the architectural model that increases the design complexity and the time delay effect. The issue encountered in the VLSI architectures for finite impulse response (FIR) filter is the increased number of components, especially delay elements. For the VLSI architecture reconfigured with reduced register usage, this article provides the floating point processing element (FPPE) implementation with Cross-Folded Shifting. The proposed FIR filter system reduces the number of components in the circuit which increases the complexity and high delay rate in the logical operation. The system has a comparatively reduced delay rate and power consumption. Hence, an efficient fast architecture based on the FPPE method is developed in this paper.</p>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"15 4\",\"pages\":\"296-301\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12010\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
FPGA-based implementation of floating point processing element for the design of efficient FIR filters
Numerous applications based on very large scale intergration (VLSI) architecture suffer from large size components that lead to an error in the design of the filter during the stages of floating point arithmetic. Hence, it is necessary to change the architectural model that increases the design complexity and the time delay effect. The issue encountered in the VLSI architectures for finite impulse response (FIR) filter is the increased number of components, especially delay elements. For the VLSI architecture reconfigured with reduced register usage, this article provides the floating point processing element (FPPE) implementation with Cross-Folded Shifting. The proposed FIR filter system reduces the number of components in the circuit which increases the complexity and high delay rate in the logical operation. The system has a comparatively reduced delay rate and power consumption. Hence, an efficient fast architecture based on the FPPE method is developed in this paper.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.