基于三角混沌映射蚁群优化的图像隐写方法

Mohan Bhandari, Subash Panday, Chandra Prakash Bhatta, S. Panday
{"title":"基于三角混沌映射蚁群优化的图像隐写方法","authors":"Mohan Bhandari, Subash Panday, Chandra Prakash Bhatta, S. Panday","doi":"10.1109/iciptm54933.2022.9753917","DOIUrl":null,"url":null,"abstract":"To establish the secure communication using image steganography by hiding the information in cover image, the study focus on image steganography based on Ant Colony Optimization (ACO) where the cover image is divided into number of 5×5 blocks. As pixel values after ACO are considered as the optimal pixels, the ants search the next qualified pixels on reference to pheromone trails to encode the text messages. After ACO, Triangular Chaotic Map (TCM) is imposed based on initial value of chaotic sequences. The proposed method outperformed other state-of-art methods like classical Least Significant Bit(LSB), LSB with ACO, LSB with logistic map for all the images under consideration: lenna.png (0.00046, 83.4021, 0.0007, 0.9990964, 0.9983), baboon.png (0.00027, 82.5526, 0.0009, 0.9990542, 0.9985), pepper.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947), dog.png (0.00045, 70.4590, 0.0005, 0.9990024, 0.9904) and flower.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947) under the evaluation metrics as Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), F-Score and Structural Similarity Index Matrix (SSIM) respectively.","PeriodicalId":6810,"journal":{"name":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"23 1","pages":"429-434"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image Steganography Approach Based Ant Colony Optimization with Triangular Chaotic Map\",\"authors\":\"Mohan Bhandari, Subash Panday, Chandra Prakash Bhatta, S. Panday\",\"doi\":\"10.1109/iciptm54933.2022.9753917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To establish the secure communication using image steganography by hiding the information in cover image, the study focus on image steganography based on Ant Colony Optimization (ACO) where the cover image is divided into number of 5×5 blocks. As pixel values after ACO are considered as the optimal pixels, the ants search the next qualified pixels on reference to pheromone trails to encode the text messages. After ACO, Triangular Chaotic Map (TCM) is imposed based on initial value of chaotic sequences. The proposed method outperformed other state-of-art methods like classical Least Significant Bit(LSB), LSB with ACO, LSB with logistic map for all the images under consideration: lenna.png (0.00046, 83.4021, 0.0007, 0.9990964, 0.9983), baboon.png (0.00027, 82.5526, 0.0009, 0.9990542, 0.9985), pepper.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947), dog.png (0.00045, 70.4590, 0.0005, 0.9990024, 0.9904) and flower.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947) under the evaluation metrics as Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), F-Score and Structural Similarity Index Matrix (SSIM) respectively.\",\"PeriodicalId\":6810,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"23 1\",\"pages\":\"429-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iciptm54933.2022.9753917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iciptm54933.2022.9753917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了通过隐藏封面图像中的信息来建立图像隐写的安全通信,研究了基于蚁群优化(ACO)的图像隐写技术,将封面图像划分为若干5×5块。蚁群算法以蚁群算法后的像素值为最优像素,参照信息素轨迹搜索下一个符合条件的像素,对短信进行编码。在蚁群算法之后,根据混沌序列的初值施加三角混沌映射(TCM)。对于所有考虑的图像,所提出的方法优于其他最先进的方法,如经典的最低有效位(LSB),带蚁群的LSB,带逻辑映射的LSB。分别以均方误差(MSE)、峰值信噪比(PSNR)、平均绝对误差(MAE)、F-Score和结构相似指数矩阵(SSIM)为评价指标,对lenna.png(0.00046、83.4021、0.0007、0.9990964、0.9983)、baboon.png(0.00027、82.5526、0.0009、0.9990542、0.9985)、pepper.png(0.00067、71.2322、0.0004、0.9990560,0.9947)、dog.png(0.00045、70.4590、0.0005、0.9990024、0.9904)和flower.png(0.00067、71.2322、0.0004、0.9990560、0.9947)进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Steganography Approach Based Ant Colony Optimization with Triangular Chaotic Map
To establish the secure communication using image steganography by hiding the information in cover image, the study focus on image steganography based on Ant Colony Optimization (ACO) where the cover image is divided into number of 5×5 blocks. As pixel values after ACO are considered as the optimal pixels, the ants search the next qualified pixels on reference to pheromone trails to encode the text messages. After ACO, Triangular Chaotic Map (TCM) is imposed based on initial value of chaotic sequences. The proposed method outperformed other state-of-art methods like classical Least Significant Bit(LSB), LSB with ACO, LSB with logistic map for all the images under consideration: lenna.png (0.00046, 83.4021, 0.0007, 0.9990964, 0.9983), baboon.png (0.00027, 82.5526, 0.0009, 0.9990542, 0.9985), pepper.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947), dog.png (0.00045, 70.4590, 0.0005, 0.9990024, 0.9904) and flower.png (0.00067, 71.2322, 0.0004, 0.9990560, 0.9947) under the evaluation metrics as Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), F-Score and Structural Similarity Index Matrix (SSIM) respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信