考虑过去不确定性的年总和生育率概率估计和预测:bayesTFR R 软件包的重大更新。

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Journal of Statistical Software Pub Date : 2023-01-01 Epub Date: 2023-03-26 DOI:10.18637/jss.v106.i08
Peiran Liu, Hana Ševčíková, Adrian E Raftery
{"title":"考虑过去不确定性的年总和生育率概率估计和预测:bayesTFR R 软件包的重大更新。","authors":"Peiran Liu, Hana Ševčíková, Adrian E Raftery","doi":"10.18637/jss.v106.i08","DOIUrl":null,"url":null,"abstract":"<p><p>The <b>bayesTFR</b> package for R provides a set of functions to produce probabilistic projections of the total fertility rates (TFR) for all countries, and is widely used, including as part of the basis for the UN's official population projections for all countries. Liu and Raftery (2020) extended the theoretical model by adding a layer that accounts for the past TFR estimation uncertainty. A major update of <b>bayesTFR</b> implements the new extension. Moreover, a new feature of producing annual TFR estimation and projections extends the existing functionality of estimating and projecting for five-year time periods. An additional autoregressive component has been developed in order to account for the larger autocorrelation in the annual version of the model. This article summarizes the updated model, describes the basic steps to generate probabilistic estimation and projections under different settings, compares performance, and provides instructions on how to summarize, visualize and diagnose the model results.</p>","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514362/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Estimation and Projection of the Annual Total Fertility Rate Accounting for Past Uncertainty: A Major Update of the bayesTFR R Package.\",\"authors\":\"Peiran Liu, Hana Ševčíková, Adrian E Raftery\",\"doi\":\"10.18637/jss.v106.i08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <b>bayesTFR</b> package for R provides a set of functions to produce probabilistic projections of the total fertility rates (TFR) for all countries, and is widely used, including as part of the basis for the UN's official population projections for all countries. Liu and Raftery (2020) extended the theoretical model by adding a layer that accounts for the past TFR estimation uncertainty. A major update of <b>bayesTFR</b> implements the new extension. Moreover, a new feature of producing annual TFR estimation and projections extends the existing functionality of estimating and projecting for five-year time periods. An additional autoregressive component has been developed in order to account for the larger autocorrelation in the annual version of the model. This article summarizes the updated model, describes the basic steps to generate probabilistic estimation and projections under different settings, compares performance, and provides instructions on how to summarize, visualize and diagnose the model results.</p>\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v106.i08\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v106.i08","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

R 的 bayesTFR 软件包提供了一组函数,用于对所有国家的总和生育率(TFR)进行概率预测,并被广泛使用,包括作为联合国对所有国家进行官方人口预测的基础的一部分。Liu 和 Raftery(2020 年)对该理论模型进行了扩展,增加了一个考虑过去总和生育率估计不确定性的层。bayesTFR 的重大更新实现了新的扩展。此外,年度总生育率估算和预测的新功能扩展了现有的五年期估算和预测功能。为了解释年度模型中更大的自相关性,还开发了一个额外的自回归部分。本文总结了更新后的模型,描述了在不同设置下生成概率估计和预测的基本步骤,比较了性能,并提供了如何总结、可视化和诊断模型结果的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Estimation and Projection of the Annual Total Fertility Rate Accounting for Past Uncertainty: A Major Update of the bayesTFR R Package.

The bayesTFR package for R provides a set of functions to produce probabilistic projections of the total fertility rates (TFR) for all countries, and is widely used, including as part of the basis for the UN's official population projections for all countries. Liu and Raftery (2020) extended the theoretical model by adding a layer that accounts for the past TFR estimation uncertainty. A major update of bayesTFR implements the new extension. Moreover, a new feature of producing annual TFR estimation and projections extends the existing functionality of estimating and projecting for five-year time periods. An additional autoregressive component has been developed in order to account for the larger autocorrelation in the annual version of the model. This article summarizes the updated model, describes the basic steps to generate probabilistic estimation and projections under different settings, compares performance, and provides instructions on how to summarize, visualize and diagnose the model results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信