{"title":"量子对称对的分类1","authors":"Huanchen Bao, P. Shan, Weiqiang Wang, Ben Webster","doi":"10.4171/QT/117","DOIUrl":null,"url":null,"abstract":"We categorify a coideal subalgebra of the quantum group of $\\mathfrak{sl}_{2r+1}$ by introducing a $2$-category a la Khovanov-Lauda-Rouquier, and show that self-dual indecomposable $1$-morphisms categorify the canonical basis of this algebra. This allows us to define a categorical action of this coideal algebra on the categories of modules over cohomology rings of partial flag varieties and on the BGG category $\\mathcal{O}$ of type B/C.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2016-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Categorification of quantum symmetric pairs I\",\"authors\":\"Huanchen Bao, P. Shan, Weiqiang Wang, Ben Webster\",\"doi\":\"10.4171/QT/117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We categorify a coideal subalgebra of the quantum group of $\\\\mathfrak{sl}_{2r+1}$ by introducing a $2$-category a la Khovanov-Lauda-Rouquier, and show that self-dual indecomposable $1$-morphisms categorify the canonical basis of this algebra. This allows us to define a categorical action of this coideal algebra on the categories of modules over cohomology rings of partial flag varieties and on the BGG category $\\\\mathcal{O}$ of type B/C.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/117\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We categorify a coideal subalgebra of the quantum group of $\mathfrak{sl}_{2r+1}$ by introducing a $2$-category a la Khovanov-Lauda-Rouquier, and show that self-dual indecomposable $1$-morphisms categorify the canonical basis of this algebra. This allows us to define a categorical action of this coideal algebra on the categories of modules over cohomology rings of partial flag varieties and on the BGG category $\mathcal{O}$ of type B/C.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.