R. E. Castillo, J. Ramos-Fernández, Eduard Trousselot
{"title":"有界(p,α)变分空间中的Nemytskii算子","authors":"R. E. Castillo, J. Ramos-Fernández, Eduard Trousselot","doi":"10.1515/anly-2022-1035","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show that if the Nemytskii operator maps the ( p , α ) {(p,\\alpha)} -bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the ( p , α ) {(p,\\alpha)} -bounded variation space such that f ( t , y ) = g ( t ) y + h ( t ) for all t ∈ [ a , b ] , y ∈ ℝ . f(t,y)=g(t)y+h(t)\\quad\\text{for all }t\\in[a,b],\\,y\\in\\mathbb{R}.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"1 1","pages":"185 - 193"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Nemytskii operator in bounded (p,α)-variation space\",\"authors\":\"R. E. Castillo, J. Ramos-Fernández, Eduard Trousselot\",\"doi\":\"10.1515/anly-2022-1035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we show that if the Nemytskii operator maps the ( p , α ) {(p,\\\\alpha)} -bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the ( p , α ) {(p,\\\\alpha)} -bounded variation space such that f ( t , y ) = g ( t ) y + h ( t ) for all t ∈ [ a , b ] , y ∈ ℝ . f(t,y)=g(t)y+h(t)\\\\quad\\\\text{for all }t\\\\in[a,b],\\\\,y\\\\in\\\\mathbb{R}.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"1 1\",\"pages\":\"185 - 193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
文摘中,我们表明,如果Nemytskii运营商地图(pα){(p \α)}有界空间变化本身和满足李普希兹条件,还有两个函数g和h属于(pα){(p \α)}有界空间变化,f(t、y) = g(t)y + h所有t (t)∈(a、b), y∈ℝ。f (t, y) = g (t) y + h (t) \四\文本所有}{t \ [a, b] \, y \ \ mathbb {R}。
The Nemytskii operator in bounded (p,α)-variation space
Abstract In this paper, we show that if the Nemytskii operator maps the ( p , α ) {(p,\alpha)} -bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the ( p , α ) {(p,\alpha)} -bounded variation space such that f ( t , y ) = g ( t ) y + h ( t ) for all t ∈ [ a , b ] , y ∈ ℝ . f(t,y)=g(t)y+h(t)\quad\text{for all }t\in[a,b],\,y\in\mathbb{R}.