{"title":"光可重构和电可切换空间太赫兹波调制器[特邀]","authors":"Hongguan Yu, Huacai Wang, Zhixiong Shen, Shina Tao, Shijun Ge, Wei Hu","doi":"10.3788/col202321.010002","DOIUrl":null,"url":null,"abstract":"Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"155 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photo-reconfigurable and electrically switchable spatial terahertz wave modulator [Invited]\",\"authors\":\"Hongguan Yu, Huacai Wang, Zhixiong Shen, Shina Tao, Shijun Ge, Wei Hu\",\"doi\":\"10.3788/col202321.010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.010002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.010002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Photo-reconfigurable and electrically switchable spatial terahertz wave modulator [Invited]
Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.