{"title":"地球系统经济学:研究地球系统中人类组成部分的生物物理学方法","authors":"E. Galbraith","doi":"10.5194/ESD-12-671-2021","DOIUrl":null,"url":null,"abstract":"Abstract. The study of humans has largely been carried out in isolation from the study of the non-human Earth system. This isolation has encouraged the development of incompatible philosophical, aspirational, and methodological approaches that have proven very difficult to integrate with those used for the non-human remainder of the Earth system. Here, an approach is laid out for the scientific study of the global human system that is intended to facilitate seamless integration with non-human processes by striving for a consistent physical basis, for which the name Earth system economics is proposed. The approach is typified by a foundation on state variables, central among which is the allocation of time amongst activities by human populations, and an orientation towards considering human experience. A framework is elaborated which parses the Earth system into six classes of state variables, including a neural structure class that underpins many essential features of humanity. A working example of the framework is then illustrated with a simple numerical model, considering a global population that is engaged in one of two waking activities: provisioning food or doing something else. The two activities are differentiated by their motivational factors, outcomes on state variables, and associated subjective experience. While the illustrative model is a gross simplification of reality, the results suggest how neural characteristics and subjective experience can emerge from model dynamics. The approach is intended to provide a flexible and widely applicable strategy for understanding the human–Earth system, appropriate for physically based assessments of the past and present, as well as contributing to long-term model projections that are naturally oriented towards improving human well-being.","PeriodicalId":11466,"journal":{"name":"Earth System Dynamics Discussions","volume":"162 1","pages":"671-687"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Earth system economics: a biophysical approach to the human component of the Earth system\",\"authors\":\"E. Galbraith\",\"doi\":\"10.5194/ESD-12-671-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The study of humans has largely been carried out in isolation from the study of the non-human Earth system. This isolation has encouraged the development of incompatible philosophical, aspirational, and methodological approaches that have proven very difficult to integrate with those used for the non-human remainder of the Earth system. Here, an approach is laid out for the scientific study of the global human system that is intended to facilitate seamless integration with non-human processes by striving for a consistent physical basis, for which the name Earth system economics is proposed. The approach is typified by a foundation on state variables, central among which is the allocation of time amongst activities by human populations, and an orientation towards considering human experience. A framework is elaborated which parses the Earth system into six classes of state variables, including a neural structure class that underpins many essential features of humanity. A working example of the framework is then illustrated with a simple numerical model, considering a global population that is engaged in one of two waking activities: provisioning food or doing something else. The two activities are differentiated by their motivational factors, outcomes on state variables, and associated subjective experience. While the illustrative model is a gross simplification of reality, the results suggest how neural characteristics and subjective experience can emerge from model dynamics. The approach is intended to provide a flexible and widely applicable strategy for understanding the human–Earth system, appropriate for physically based assessments of the past and present, as well as contributing to long-term model projections that are naturally oriented towards improving human well-being.\",\"PeriodicalId\":11466,\"journal\":{\"name\":\"Earth System Dynamics Discussions\",\"volume\":\"162 1\",\"pages\":\"671-687\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Dynamics Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ESD-12-671-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESD-12-671-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Earth system economics: a biophysical approach to the human component of the Earth system
Abstract. The study of humans has largely been carried out in isolation from the study of the non-human Earth system. This isolation has encouraged the development of incompatible philosophical, aspirational, and methodological approaches that have proven very difficult to integrate with those used for the non-human remainder of the Earth system. Here, an approach is laid out for the scientific study of the global human system that is intended to facilitate seamless integration with non-human processes by striving for a consistent physical basis, for which the name Earth system economics is proposed. The approach is typified by a foundation on state variables, central among which is the allocation of time amongst activities by human populations, and an orientation towards considering human experience. A framework is elaborated which parses the Earth system into six classes of state variables, including a neural structure class that underpins many essential features of humanity. A working example of the framework is then illustrated with a simple numerical model, considering a global population that is engaged in one of two waking activities: provisioning food or doing something else. The two activities are differentiated by their motivational factors, outcomes on state variables, and associated subjective experience. While the illustrative model is a gross simplification of reality, the results suggest how neural characteristics and subjective experience can emerge from model dynamics. The approach is intended to provide a flexible and widely applicable strategy for understanding the human–Earth system, appropriate for physically based assessments of the past and present, as well as contributing to long-term model projections that are naturally oriented towards improving human well-being.