被动复制移动伪造检测使用SIFT, HOG和SURF的特点

S. Prasad, B. Ramkumar
{"title":"被动复制移动伪造检测使用SIFT, HOG和SURF的特点","authors":"S. Prasad, B. Ramkumar","doi":"10.1109/RTEICT.2016.7807915","DOIUrl":null,"url":null,"abstract":"Copy-move is a common type of digital image forgery. In an image, Copy-Move tampering might be done to hide an undesirable region or to duplicate something in the image. These images might be used for the necessary purpose like evidence in the court of law. So, authenticity verification plays a vital role for digital images. In this paper, we compare the CMFD (Copy-Move Forgery Detection) using Image features like SIFT (Scale Invariant Features Transform), HOG (Histogram Oriented Gradient) and SURF (Speed-Up Robust Features) and hybrid features (SURF-HOG and SIFT-HOG). The comparison results show that CMFD using SIFT features provide better results as compared with SURF and HOG features. Also, considering hybrid features, SIFT-HOG and SURF-HOG produce better results for CMFD using SIFT, SURF or HOG alone.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"30 1","pages":"706-710"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Passive copy-move forgery detection using SIFT, HOG and SURF features\",\"authors\":\"S. Prasad, B. Ramkumar\",\"doi\":\"10.1109/RTEICT.2016.7807915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copy-move is a common type of digital image forgery. In an image, Copy-Move tampering might be done to hide an undesirable region or to duplicate something in the image. These images might be used for the necessary purpose like evidence in the court of law. So, authenticity verification plays a vital role for digital images. In this paper, we compare the CMFD (Copy-Move Forgery Detection) using Image features like SIFT (Scale Invariant Features Transform), HOG (Histogram Oriented Gradient) and SURF (Speed-Up Robust Features) and hybrid features (SURF-HOG and SIFT-HOG). The comparison results show that CMFD using SIFT features provide better results as compared with SURF and HOG features. Also, considering hybrid features, SIFT-HOG and SURF-HOG produce better results for CMFD using SIFT, SURF or HOG alone.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"30 1\",\"pages\":\"706-710\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7807915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7807915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

复制移动是一种常见的数字图像伪造类型。在图像中,复制-移动篡改可能是为了隐藏不需要的区域或复制图像中的某些内容。这些图像可以用于必要的目的,如法庭上的证据。因此,对数字图像的真实性验证起着至关重要的作用。在本文中,我们比较了使用SIFT(比例不变特征变换),HOG(直方图导向梯度)和SURF(加速鲁棒特征)等图像特征和混合特征(SURF-HOG和SIFT-HOG)的CMFD(复制-移动伪造检测)。对比结果表明,与SURF和HOG特征相比,使用SIFT特征的CMFD效果更好。此外,考虑到混合特性,SIFT-HOG和SURF-HOG单独使用SIFT、SURF或HOG可以产生更好的CMFD结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive copy-move forgery detection using SIFT, HOG and SURF features
Copy-move is a common type of digital image forgery. In an image, Copy-Move tampering might be done to hide an undesirable region or to duplicate something in the image. These images might be used for the necessary purpose like evidence in the court of law. So, authenticity verification plays a vital role for digital images. In this paper, we compare the CMFD (Copy-Move Forgery Detection) using Image features like SIFT (Scale Invariant Features Transform), HOG (Histogram Oriented Gradient) and SURF (Speed-Up Robust Features) and hybrid features (SURF-HOG and SIFT-HOG). The comparison results show that CMFD using SIFT features provide better results as compared with SURF and HOG features. Also, considering hybrid features, SIFT-HOG and SURF-HOG produce better results for CMFD using SIFT, SURF or HOG alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信