{"title":"钙钛矿光伏生命周期环境影响研究综述","authors":"Enrica Leccisi, V. Fthenakis","doi":"10.1109/PVSC40753.2019.9198977","DOIUrl":null,"url":null,"abstract":"This paper investigates the most commonly proposed organic-inorganic lead halide perovskite solar cell (PSC) architectures in terms of their potential life-cycle environmental impacts. We critically review the validity of assumptions and the results of previously published studies. As great challenges remain in scaling up devices from laboratory scale to large-area module manufacturing, we focus this investigation on materials and processes that have a good scalability potential and minimum possible environmental footprints. Thus, we calculate and compare PSC prospective environmental life-cycle impacts in terms of global warming potential (GWP) and acidification potential (AP) while assessing the scalability of associated manufacturing processes.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"96 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Critical Review of Perovskite Photovoltaic Life Cycle Environmental Impact Studies\",\"authors\":\"Enrica Leccisi, V. Fthenakis\",\"doi\":\"10.1109/PVSC40753.2019.9198977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the most commonly proposed organic-inorganic lead halide perovskite solar cell (PSC) architectures in terms of their potential life-cycle environmental impacts. We critically review the validity of assumptions and the results of previously published studies. As great challenges remain in scaling up devices from laboratory scale to large-area module manufacturing, we focus this investigation on materials and processes that have a good scalability potential and minimum possible environmental footprints. Thus, we calculate and compare PSC prospective environmental life-cycle impacts in terms of global warming potential (GWP) and acidification potential (AP) while assessing the scalability of associated manufacturing processes.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"96 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Review of Perovskite Photovoltaic Life Cycle Environmental Impact Studies
This paper investigates the most commonly proposed organic-inorganic lead halide perovskite solar cell (PSC) architectures in terms of their potential life-cycle environmental impacts. We critically review the validity of assumptions and the results of previously published studies. As great challenges remain in scaling up devices from laboratory scale to large-area module manufacturing, we focus this investigation on materials and processes that have a good scalability potential and minimum possible environmental footprints. Thus, we calculate and compare PSC prospective environmental life-cycle impacts in terms of global warming potential (GWP) and acidification potential (AP) while assessing the scalability of associated manufacturing processes.