Jing Yang, Tyler R Schleicher, Yuemei Dong, Hyun Bong Park, Jiangfeng Lan, Peter Cresswell, Jason Crawford, George Dimopoulos, Erol Fikrig
{"title":"冈比亚按蚊mosGILT的破坏会影响卵巢发育和疟原虫感染。","authors":"Jing Yang, Tyler R Schleicher, Yuemei Dong, Hyun Bong Park, Jiangfeng Lan, Peter Cresswell, Jason Crawford, George Dimopoulos, Erol Fikrig","doi":"10.1084/jem.20190682","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.</p>","PeriodicalId":45476,"journal":{"name":"NOTES AND QUERIES","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection.\",\"authors\":\"Jing Yang, Tyler R Schleicher, Yuemei Dong, Hyun Bong Park, Jiangfeng Lan, Peter Cresswell, Jason Crawford, George Dimopoulos, Erol Fikrig\",\"doi\":\"10.1084/jem.20190682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.</p>\",\"PeriodicalId\":45476,\"journal\":{\"name\":\"NOTES AND QUERIES\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOTES AND QUERIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20190682\",\"RegionNum\":3,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LITERATURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOTES AND QUERIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1084/jem.20190682","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LITERATURE","Score":null,"Total":0}
Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection.
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
期刊介绍:
Founded under the editorship of the antiquary W J Thoms, the primary intention of Notes and Queries was, and still remains, the asking and answering of readers" questions. It is devoted principally to English language and literature, lexicography, history, and scholarly antiquarianism. Each issue focuses on the works of a particular period, with an emphasis on the factual rather than the speculative. The journal comprises notes, book reviews, readers" queries and replies.