网络异常检测中高斯相似度量的设计

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460759
Arun Nagaraja, U. Boregowda, V. Radhakrishna, R. Gunupudi
{"title":"网络异常检测中高斯相似度量的设计","authors":"Arun Nagaraja, U. Boregowda, V. Radhakrishna, R. Gunupudi","doi":"10.1145/3460620.3460759","DOIUrl":null,"url":null,"abstract":"Identifying intrusion in networks is one of the important concerns in computer networks. The task of dimensionality reduction and choice of classifier plays an important role in network intrusion detection. Dimensionality reduction should make sure that the efficacy of classifier on reduced dimensionality data is atleast retained if not improved. In this paper, we suggest a similarity function which can be used to find similarity between any two network elements expressed as vectors. The similarity measure is designed to make sure that the attribute distribution is taken into account for finding similarity value.","PeriodicalId":36824,"journal":{"name":"Data","volume":"62 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of Gaussian Similarity Measure for Network Anomaly Detection\",\"authors\":\"Arun Nagaraja, U. Boregowda, V. Radhakrishna, R. Gunupudi\",\"doi\":\"10.1145/3460620.3460759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying intrusion in networks is one of the important concerns in computer networks. The task of dimensionality reduction and choice of classifier plays an important role in network intrusion detection. Dimensionality reduction should make sure that the efficacy of classifier on reduced dimensionality data is atleast retained if not improved. In this paper, we suggest a similarity function which can be used to find similarity between any two network elements expressed as vectors. The similarity measure is designed to make sure that the attribute distribution is taken into account for finding similarity value.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1145/3460620.3460759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

识别网络中的入侵是计算机网络中的重要问题之一。降维和分类器的选择在网络入侵检测中起着重要的作用。降维应确保分类器在降维数据上的有效性即使没有得到提高,至少也能得到保留。在本文中,我们提出了一个相似函数,它可以用来寻找任何两个以向量表示的网络元素之间的相似性。设计相似度度量是为了确保在查找相似值时考虑属性分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Gaussian Similarity Measure for Network Anomaly Detection
Identifying intrusion in networks is one of the important concerns in computer networks. The task of dimensionality reduction and choice of classifier plays an important role in network intrusion detection. Dimensionality reduction should make sure that the efficacy of classifier on reduced dimensionality data is atleast retained if not improved. In this paper, we suggest a similarity function which can be used to find similarity between any two network elements expressed as vectors. The similarity measure is designed to make sure that the attribute distribution is taken into account for finding similarity value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信