S. Pelaez, C. Deline, J. Stein, B. Marion, Kevin Anderson, M. Muller
{"title":"转矩管参数对单轴跟踪系统双面光伏性能后辐照度和后遮光损失的影响","authors":"S. Pelaez, C. Deline, J. Stein, B. Marion, Kevin Anderson, M. Muller","doi":"10.1109/PVSC40753.2019.9198975","DOIUrl":null,"url":null,"abstract":"The emergence of cost-competitive bifacial PV modules has raised the question of the additional value of bifacial 1-axis tracking arrays, in particular when considering rear-irradiance losses from the tracker system itself. In this work, the effect of different geometries and materials of torque tubes is evaluated through ray-trace simulations and found to cause rear irradiance shading factors between 2% to 8% for systems without gap between the modules in 2-UP configuration. Inclusion of a gap between the modules can offset the shading factor. Electrical mismatch is also evaluated for the various configurations, and a methodology to apply shading factor and electrical mismatch loss to rear irradiance from the calculated loss in DC power, which averages 1% for the systems explored here, is proposed.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"92 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effect of torque-tube parameters on rear-irradiance and rear-shading loss for bifacial PV performance on single-axis tracking systems\",\"authors\":\"S. Pelaez, C. Deline, J. Stein, B. Marion, Kevin Anderson, M. Muller\",\"doi\":\"10.1109/PVSC40753.2019.9198975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of cost-competitive bifacial PV modules has raised the question of the additional value of bifacial 1-axis tracking arrays, in particular when considering rear-irradiance losses from the tracker system itself. In this work, the effect of different geometries and materials of torque tubes is evaluated through ray-trace simulations and found to cause rear irradiance shading factors between 2% to 8% for systems without gap between the modules in 2-UP configuration. Inclusion of a gap between the modules can offset the shading factor. Electrical mismatch is also evaluated for the various configurations, and a methodology to apply shading factor and electrical mismatch loss to rear irradiance from the calculated loss in DC power, which averages 1% for the systems explored here, is proposed.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"92 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.9198975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of torque-tube parameters on rear-irradiance and rear-shading loss for bifacial PV performance on single-axis tracking systems
The emergence of cost-competitive bifacial PV modules has raised the question of the additional value of bifacial 1-axis tracking arrays, in particular when considering rear-irradiance losses from the tracker system itself. In this work, the effect of different geometries and materials of torque tubes is evaluated through ray-trace simulations and found to cause rear irradiance shading factors between 2% to 8% for systems without gap between the modules in 2-UP configuration. Inclusion of a gap between the modules can offset the shading factor. Electrical mismatch is also evaluated for the various configurations, and a methodology to apply shading factor and electrical mismatch loss to rear irradiance from the calculated loss in DC power, which averages 1% for the systems explored here, is proposed.