Jeremy Plé, Tenon Charly Kone, Alla Eddine Benchikh Lehocine, R. Panneton
{"title":"应用于厨房通风柜的声学超材料的声音衰减","authors":"Jeremy Plé, Tenon Charly Kone, Alla Eddine Benchikh Lehocine, R. Panneton","doi":"10.3397/nc_2023_0044","DOIUrl":null,"url":null,"abstract":"In a society where the vast majority of people spend their time inside buildings or vehicles, the need to filter the air is essential to ensure a certain level of comfort. The integration of air exchanger systems in these enclosed spaces generates noise pollution which can deteriorate\n the quality of the air. Thus, controlling the noise generated by these systems becomes a major challenge for the construction industry. Recent traditional solutions such as acoustic sonic crystals only allow high frequency noise control. One solution is the incorporation of inner structured\n acoustic materials for the control of low frequency transmission. This paper proposes a coupling of sonic crystals and structural acoustic materials for the control of sound transmission at low and high frequencies. To achieve this, research and simulations of the acoustic properties of various\n metamaterial models under the COMSOL software were established as well as a system of the selected solutions, using the transfer matrix method. Experimental impedance tube analyses are being carried out for varying geometries, along with a fabrication method for prototyping.","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sound attenuation by acoustic metamaterials applied to kitchen hoods\",\"authors\":\"Jeremy Plé, Tenon Charly Kone, Alla Eddine Benchikh Lehocine, R. Panneton\",\"doi\":\"10.3397/nc_2023_0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a society where the vast majority of people spend their time inside buildings or vehicles, the need to filter the air is essential to ensure a certain level of comfort. The integration of air exchanger systems in these enclosed spaces generates noise pollution which can deteriorate\\n the quality of the air. Thus, controlling the noise generated by these systems becomes a major challenge for the construction industry. Recent traditional solutions such as acoustic sonic crystals only allow high frequency noise control. One solution is the incorporation of inner structured\\n acoustic materials for the control of low frequency transmission. This paper proposes a coupling of sonic crystals and structural acoustic materials for the control of sound transmission at low and high frequencies. To achieve this, research and simulations of the acoustic properties of various\\n metamaterial models under the COMSOL software were established as well as a system of the selected solutions, using the transfer matrix method. Experimental impedance tube analyses are being carried out for varying geometries, along with a fabrication method for prototyping.\",\"PeriodicalId\":19195,\"journal\":{\"name\":\"Noise & Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise & Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3397/nc_2023_0044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3397/nc_2023_0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Sound attenuation by acoustic metamaterials applied to kitchen hoods
In a society where the vast majority of people spend their time inside buildings or vehicles, the need to filter the air is essential to ensure a certain level of comfort. The integration of air exchanger systems in these enclosed spaces generates noise pollution which can deteriorate
the quality of the air. Thus, controlling the noise generated by these systems becomes a major challenge for the construction industry. Recent traditional solutions such as acoustic sonic crystals only allow high frequency noise control. One solution is the incorporation of inner structured
acoustic materials for the control of low frequency transmission. This paper proposes a coupling of sonic crystals and structural acoustic materials for the control of sound transmission at low and high frequencies. To achieve this, research and simulations of the acoustic properties of various
metamaterial models under the COMSOL software were established as well as a system of the selected solutions, using the transfer matrix method. Experimental impedance tube analyses are being carried out for varying geometries, along with a fabrication method for prototyping.
Noise & HealthAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍:
Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.