E. Kremneva, B. M. Akhmetzyanov, L. Dobrynina, M. Krotenkova
{"title":"与年龄相关的脑小血管疾病患者的相衬MRI评估血液和脑脊液流动障碍与脑损伤之间的关系","authors":"E. Kremneva, B. M. Akhmetzyanov, L. Dobrynina, M. Krotenkova","doi":"10.24075/brsmu.2019.054","DOIUrl":null,"url":null,"abstract":"Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.","PeriodicalId":90498,"journal":{"name":"Exosomes and microvesicles","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations between blood and cerebrospinal fluid flow impairments assessed with phase-contrast MRI and brain damage in patients with age-related cerebral small vessel disease\",\"authors\":\"E. Kremneva, B. M. Akhmetzyanov, L. Dobrynina, M. Krotenkova\",\"doi\":\"10.24075/brsmu.2019.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.\",\"PeriodicalId\":90498,\"journal\":{\"name\":\"Exosomes and microvesicles\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exosomes and microvesicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24075/brsmu.2019.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exosomes and microvesicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24075/brsmu.2019.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Associations between blood and cerebrospinal fluid flow impairments assessed with phase-contrast MRI and brain damage in patients with age-related cerebral small vessel disease
Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.