Jinliang Han, Jun Zhang, X. Shan, Yawei Zhang, H. Peng, L. Qin, Lijun Wang
{"title":"基于二极管激光束组合技术的激光照明器光束均匀化结构设计","authors":"Jinliang Han, Jun Zhang, X. Shan, Yawei Zhang, H. Peng, L. Qin, Lijun Wang","doi":"10.3788/col202321.031405","DOIUrl":null,"url":null,"abstract":"With the rapid development of laser technology, laser as the light source of night vision illuminating can realize long-dis-tance and clear imaging, which has been widely used in laser active illuminating field. A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source, and the output power of no less than 100 W was obtained by spatial beam multiplexing, polarization multiplexing, and high efficiency fiber coupling techniques. In view of the beam homogenization of illuminating source, a novel beam homogenization system based on waveguide is proposed in this work. A square spot with a horizontal divergence angle of 40°, a vertical divergence angle of 10°, and an illuminating power ratio of 4:1 was obtained by a collimating lens. Comparing with the traditional circular illuminating beam, the square illuminating beam can match the illuminating angle of CCD camera better, and the energy utilization rate is higher. In addition, by optimizing the structure of waveguide and collimating lens, the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"13 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam homogenization structure for a laser illuminator design based on diode laser beam combining technology\",\"authors\":\"Jinliang Han, Jun Zhang, X. Shan, Yawei Zhang, H. Peng, L. Qin, Lijun Wang\",\"doi\":\"10.3788/col202321.031405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of laser technology, laser as the light source of night vision illuminating can realize long-dis-tance and clear imaging, which has been widely used in laser active illuminating field. A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source, and the output power of no less than 100 W was obtained by spatial beam multiplexing, polarization multiplexing, and high efficiency fiber coupling techniques. In view of the beam homogenization of illuminating source, a novel beam homogenization system based on waveguide is proposed in this work. A square spot with a horizontal divergence angle of 40°, a vertical divergence angle of 10°, and an illuminating power ratio of 4:1 was obtained by a collimating lens. Comparing with the traditional circular illuminating beam, the square illuminating beam can match the illuminating angle of CCD camera better, and the energy utilization rate is higher. In addition, by optimizing the structure of waveguide and collimating lens, the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.031405\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.031405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Beam homogenization structure for a laser illuminator design based on diode laser beam combining technology
With the rapid development of laser technology, laser as the light source of night vision illuminating can realize long-dis-tance and clear imaging, which has been widely used in laser active illuminating field. A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source, and the output power of no less than 100 W was obtained by spatial beam multiplexing, polarization multiplexing, and high efficiency fiber coupling techniques. In view of the beam homogenization of illuminating source, a novel beam homogenization system based on waveguide is proposed in this work. A square spot with a horizontal divergence angle of 40°, a vertical divergence angle of 10°, and an illuminating power ratio of 4:1 was obtained by a collimating lens. Comparing with the traditional circular illuminating beam, the square illuminating beam can match the illuminating angle of CCD camera better, and the energy utilization rate is higher. In addition, by optimizing the structure of waveguide and collimating lens, the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.