坦波利-里布代数中的对偶基,量子群,以及琼斯的一个问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michael Brannan, B. Collins
{"title":"坦波利-里布代数中的对偶基,量子群,以及琼斯的一个问题","authors":"Michael Brannan, B. Collins","doi":"10.4171/QT/118","DOIUrl":null,"url":null,"abstract":"We derive a Laurent series expansion for the structure coefficients appearing in the dual basis corresponding to the Kauffman diagram basis of the Temperley-Lieb algebra $\\text{TL}_k(d)$, converging for all complex loop parameters $d$ with $|d| > 2\\cos\\big(\\frac{\\pi}{k+1}\\big)$. In particular, this yields a new formula for the structure coefficients of the Jones-Wenzl projection in $\\text{TL}_k(d)$. The coefficients appearing in each Laurent expansion are shown to have a natural combinatorial interpretation in terms of a certain graph structure we place on non-crossing pairings, and these coefficients turn out to have the remarkable property that they either always positive integers or always negative integers. As an application, we answer affirmatively a question of Vaughan Jones, asking whether every Temperley-Lieb diagram appears with non-zero coefficient in the expansion of each dual basis element in $\\text{TL}_k(d)$ (when $d \\in \\mathbb R \\backslash [-2\\cos\\big(\\frac{\\pi}{k+1}\\big),2\\cos\\big(\\frac{\\pi}{k+1}\\big)]$). Specializing to Jones-Wenzl projections, this result gives a new proof of a result of Ocneanu, stating that every Temperley-Lieb diagram appears with non-zero coefficient in a Jones-Wenzl projection. Our methods establish a connection with the Weingarten calculus on free quantum groups, and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dual bases in Temperley–Lieb algebras, quantum groups, and a question of Jones\",\"authors\":\"Michael Brannan, B. Collins\",\"doi\":\"10.4171/QT/118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a Laurent series expansion for the structure coefficients appearing in the dual basis corresponding to the Kauffman diagram basis of the Temperley-Lieb algebra $\\\\text{TL}_k(d)$, converging for all complex loop parameters $d$ with $|d| > 2\\\\cos\\\\big(\\\\frac{\\\\pi}{k+1}\\\\big)$. In particular, this yields a new formula for the structure coefficients of the Jones-Wenzl projection in $\\\\text{TL}_k(d)$. The coefficients appearing in each Laurent expansion are shown to have a natural combinatorial interpretation in terms of a certain graph structure we place on non-crossing pairings, and these coefficients turn out to have the remarkable property that they either always positive integers or always negative integers. As an application, we answer affirmatively a question of Vaughan Jones, asking whether every Temperley-Lieb diagram appears with non-zero coefficient in the expansion of each dual basis element in $\\\\text{TL}_k(d)$ (when $d \\\\in \\\\mathbb R \\\\backslash [-2\\\\cos\\\\big(\\\\frac{\\\\pi}{k+1}\\\\big),2\\\\cos\\\\big(\\\\frac{\\\\pi}{k+1}\\\\big)]$). Specializing to Jones-Wenzl projections, this result gives a new proof of a result of Ocneanu, stating that every Temperley-Lieb diagram appears with non-zero coefficient in a Jones-Wenzl projection. Our methods establish a connection with the Weingarten calculus on free quantum groups, and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/118\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/118","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

我们对出现在对应于Temperley-Lieb代数$\text{TL}_k(d)$的Kauffman图基的对偶基中的结构系数导出了一个Laurent级数展开式,该展开式收敛于所有复杂回路参数$d$与$|d| > 2\cos\big(\frac{\pi}{k+1}\big)$。特别地,这产生了$\text{TL}_k(d)$中Jones-Wenzl投影的结构系数的新公式。在每个劳伦展开式中出现的系数被证明有一个自然的组合解释,根据我们在非交叉配对上放置的某个图结构,这些系数证明具有一个显著的性质,即它们要么总是正整数,要么总是负整数。作为应用,我们肯定地回答了Vaughan Jones的一个问题,即在$\text{TL}_k(d)$(当$d \in \mathbb R \backslash [-2\cos\big(\frac{\pi}{k+1}\big),2\cos\big(\frac{\pi}{k+1}\big)]$)的每个对偶基元展开中是否每个Temperley-Lieb图都以非零系数出现。专门研究Jones-Wenzl投影,这个结果给出了Ocneanu结果的一个新的证明,说明在Jones-Wenzl投影中,每个Temperley-Lieb图都以非零系数出现。我们的方法建立了与自由量子群上的Weingarten微积分的联系,并作为副产品得到了自由正交Weingarten函数的改进渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual bases in Temperley–Lieb algebras, quantum groups, and a question of Jones
We derive a Laurent series expansion for the structure coefficients appearing in the dual basis corresponding to the Kauffman diagram basis of the Temperley-Lieb algebra $\text{TL}_k(d)$, converging for all complex loop parameters $d$ with $|d| > 2\cos\big(\frac{\pi}{k+1}\big)$. In particular, this yields a new formula for the structure coefficients of the Jones-Wenzl projection in $\text{TL}_k(d)$. The coefficients appearing in each Laurent expansion are shown to have a natural combinatorial interpretation in terms of a certain graph structure we place on non-crossing pairings, and these coefficients turn out to have the remarkable property that they either always positive integers or always negative integers. As an application, we answer affirmatively a question of Vaughan Jones, asking whether every Temperley-Lieb diagram appears with non-zero coefficient in the expansion of each dual basis element in $\text{TL}_k(d)$ (when $d \in \mathbb R \backslash [-2\cos\big(\frac{\pi}{k+1}\big),2\cos\big(\frac{\pi}{k+1}\big)]$). Specializing to Jones-Wenzl projections, this result gives a new proof of a result of Ocneanu, stating that every Temperley-Lieb diagram appears with non-zero coefficient in a Jones-Wenzl projection. Our methods establish a connection with the Weingarten calculus on free quantum groups, and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信