抑制森林砍伐的协同消化沼气厂设计——以马拉维Phalombe中学为例

Limbe, Industrial, Eldoret, Kigali, Rwanda
{"title":"抑制森林砍伐的协同消化沼气厂设计——以马拉维Phalombe中学为例","authors":"Limbe, Industrial, Eldoret, Kigali, Rwanda","doi":"10.4236/OALIB.1107255","DOIUrl":null,"url":null,"abstract":"Biogas technology is one of the renewable technologies that use biodegradable waste such as human waste (HW), agricultural waste, animal and food waste. Over 90% of the population in Malawi is heavily reliant on firewood as their primary source of energy for cooking. This results in deforestation, pollution of the environment, and great monetary expenditure to buy firewood, more especially by boarding schools. A co-digestion biogas plant that uses human, animal, agriculture, and canteen food waste has been designed. This study design was based on the use of HW and canteen food wastes (CFW) as the substrate for the biodigester to produce methane (CH4) gas that could be used for cooking and lighting at Phalombe Secondary School in Malawi to replace firewood. With a school population of 757 people, design calculations/stimations were performed to find out the amount of HW and CFW required per day. A field survey at the school was carried out to appreciate the problem the school is facing so that a solution could be found. Based on factors such as energy demand at the school, availability of feedstock, size of the digester, biogas yield, life span of the biodigester, and availability of construction materials, the type of biogas plant suitable for this purpose has been selected and designed. A computer-aided design (Auto CAD) software was used for the drawing. These design parameters were arrived at through a baseline survey, observation methods, and literature reviews. Through a questionnaire, a detailed energy demand analysis was carried out from whose results a fixed dome biogas plant of digester size 62 m3, gasometer of size 19 m3, and digestate collection tank size of 61 m3 has been designed. The design came up with an amount of HW and CFW of 286 and 60 kg per day respectively making total organic raw materials of 346 kg per day. The macromolecular composition of the HW, CFW, and mixture of HW and CFW in terms of dry matter (DM) was 11%, 45% and 56% of carbohydrate, 3%, 15%, and 18% of protein, 15%, 40%, and 30% lipids, and 15%, 0%, and 15% of ash respectively. The substrate showed a high degradability of 90%. The simulation analysis showed that HW produced 185 m3 per kg of biogas which represented 64% and 35.9% CH4 and carbon dioxide (CO2), CFW produced 58.9 m3 per kg that represented 61.1% and 38.4% of CH4 ad CO2, and mixture produced 265 m3 per kg contained 59% and 41% of CH4 and CO2 in 40 days respectively. A cost estimate of the design has been carried out to appreciate the economic viability of the biogas technology and is estimated at the US$5277. The cost of constructing a biogas plant at the school is less than what the school is spending currently on firewood and electricity, a recommendation has been made to adopt the technology to reduce the financial burden the school is facing.","PeriodicalId":19593,"journal":{"name":"Open Access Library Journal","volume":"1 1","pages":"1-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Co-Digestion Biogas Plant to Curb Deforestation-Case Study of Phalombe Secondary School in Malawi\",\"authors\":\"Limbe, Industrial, Eldoret, Kigali, Rwanda\",\"doi\":\"10.4236/OALIB.1107255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biogas technology is one of the renewable technologies that use biodegradable waste such as human waste (HW), agricultural waste, animal and food waste. Over 90% of the population in Malawi is heavily reliant on firewood as their primary source of energy for cooking. This results in deforestation, pollution of the environment, and great monetary expenditure to buy firewood, more especially by boarding schools. A co-digestion biogas plant that uses human, animal, agriculture, and canteen food waste has been designed. This study design was based on the use of HW and canteen food wastes (CFW) as the substrate for the biodigester to produce methane (CH4) gas that could be used for cooking and lighting at Phalombe Secondary School in Malawi to replace firewood. With a school population of 757 people, design calculations/stimations were performed to find out the amount of HW and CFW required per day. A field survey at the school was carried out to appreciate the problem the school is facing so that a solution could be found. Based on factors such as energy demand at the school, availability of feedstock, size of the digester, biogas yield, life span of the biodigester, and availability of construction materials, the type of biogas plant suitable for this purpose has been selected and designed. A computer-aided design (Auto CAD) software was used for the drawing. These design parameters were arrived at through a baseline survey, observation methods, and literature reviews. Through a questionnaire, a detailed energy demand analysis was carried out from whose results a fixed dome biogas plant of digester size 62 m3, gasometer of size 19 m3, and digestate collection tank size of 61 m3 has been designed. The design came up with an amount of HW and CFW of 286 and 60 kg per day respectively making total organic raw materials of 346 kg per day. The macromolecular composition of the HW, CFW, and mixture of HW and CFW in terms of dry matter (DM) was 11%, 45% and 56% of carbohydrate, 3%, 15%, and 18% of protein, 15%, 40%, and 30% lipids, and 15%, 0%, and 15% of ash respectively. The substrate showed a high degradability of 90%. The simulation analysis showed that HW produced 185 m3 per kg of biogas which represented 64% and 35.9% CH4 and carbon dioxide (CO2), CFW produced 58.9 m3 per kg that represented 61.1% and 38.4% of CH4 ad CO2, and mixture produced 265 m3 per kg contained 59% and 41% of CH4 and CO2 in 40 days respectively. A cost estimate of the design has been carried out to appreciate the economic viability of the biogas technology and is estimated at the US$5277. The cost of constructing a biogas plant at the school is less than what the school is spending currently on firewood and electricity, a recommendation has been made to adopt the technology to reduce the financial burden the school is facing.\",\"PeriodicalId\":19593,\"journal\":{\"name\":\"Open Access Library Journal\",\"volume\":\"1 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Library Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OALIB.1107255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Library Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OALIB.1107255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

沼气技术是利用人类粪便、农业废物、动物和食物废物等可生物降解废物的可再生技术之一。马拉维90%以上的人口严重依赖木柴作为做饭的主要能源来源。这导致了森林砍伐,环境污染,以及购买柴火的大量金钱支出,尤其是寄宿学校。设计了一个利用人类、动物、农业和食堂食物垃圾的共消化沼气工厂。本研究设计是基于使用HW和食堂食物垃圾(CFW)作为生物沼气池的底物,以产生甲烷(CH4)气体,甲烷(CH4)气体可用于马拉维Phalombe中学的烹饪和照明,以取代木柴。学校人口为757人,进行了设计计算/估算,以找出每天所需的HW和CFW的数量。在学校进行了一次实地调查,以了解学校面临的问题,以便找到解决办法。根据学校的能源需求、原料的可用性、沼气池的大小、沼气产量、沼气池的寿命和建筑材料的可用性等因素,选择和设计了适合这一目的的沼气厂类型。采用计算机辅助设计(Auto CAD)软件进行制图。这些设计参数是通过基线调查、观察方法和文献综述得出的。通过问卷调查,进行了详细的能源需求分析,设计了沼气池规模62 m3、气计规模19 m3、沼液收集池规模61 m3的固定式圆顶沼气厂。设计结果表明,该工艺每天消耗的热量为286 kg,循环热量为60 kg,总有机原料为346 kg。以干物质(DM)计,高分子量、低分子量和低分子量混合物的大分子组成分别为碳水化合物的11%、45%和56%,蛋白质的3%、15%和18%,脂质的15%、40%和30%,灰分的15%、0%和15%。该底物的降解率高达90%。模拟分析表明,在40天内,HW每kg沼气产生量为185 m3,分别占CH4和CO2的64%和35.9%,CFW每kg沼气产生量为58.9 m3,分别占CH4和CO2的61.1%和38.4%,混合物产生量为265 m3 / kg,分别占CH4和CO2的59%和41%。对该设计进行了成本估计,以评估沼气技术的经济可行性,估计为5277美元。在学校建造一个沼气厂的成本比学校目前在柴火和电力上的花费要少,有人建议采用这项技术来减轻学校面临的经济负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Co-Digestion Biogas Plant to Curb Deforestation-Case Study of Phalombe Secondary School in Malawi
Biogas technology is one of the renewable technologies that use biodegradable waste such as human waste (HW), agricultural waste, animal and food waste. Over 90% of the population in Malawi is heavily reliant on firewood as their primary source of energy for cooking. This results in deforestation, pollution of the environment, and great monetary expenditure to buy firewood, more especially by boarding schools. A co-digestion biogas plant that uses human, animal, agriculture, and canteen food waste has been designed. This study design was based on the use of HW and canteen food wastes (CFW) as the substrate for the biodigester to produce methane (CH4) gas that could be used for cooking and lighting at Phalombe Secondary School in Malawi to replace firewood. With a school population of 757 people, design calculations/stimations were performed to find out the amount of HW and CFW required per day. A field survey at the school was carried out to appreciate the problem the school is facing so that a solution could be found. Based on factors such as energy demand at the school, availability of feedstock, size of the digester, biogas yield, life span of the biodigester, and availability of construction materials, the type of biogas plant suitable for this purpose has been selected and designed. A computer-aided design (Auto CAD) software was used for the drawing. These design parameters were arrived at through a baseline survey, observation methods, and literature reviews. Through a questionnaire, a detailed energy demand analysis was carried out from whose results a fixed dome biogas plant of digester size 62 m3, gasometer of size 19 m3, and digestate collection tank size of 61 m3 has been designed. The design came up with an amount of HW and CFW of 286 and 60 kg per day respectively making total organic raw materials of 346 kg per day. The macromolecular composition of the HW, CFW, and mixture of HW and CFW in terms of dry matter (DM) was 11%, 45% and 56% of carbohydrate, 3%, 15%, and 18% of protein, 15%, 40%, and 30% lipids, and 15%, 0%, and 15% of ash respectively. The substrate showed a high degradability of 90%. The simulation analysis showed that HW produced 185 m3 per kg of biogas which represented 64% and 35.9% CH4 and carbon dioxide (CO2), CFW produced 58.9 m3 per kg that represented 61.1% and 38.4% of CH4 ad CO2, and mixture produced 265 m3 per kg contained 59% and 41% of CH4 and CO2 in 40 days respectively. A cost estimate of the design has been carried out to appreciate the economic viability of the biogas technology and is estimated at the US$5277. The cost of constructing a biogas plant at the school is less than what the school is spending currently on firewood and electricity, a recommendation has been made to adopt the technology to reduce the financial burden the school is facing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信