净形拉伸试样作为金属增材制造材料性能的代表:评价与修正系数

Nicholas Bass, S. Jalui, G. Manogharan
{"title":"净形拉伸试样作为金属增材制造材料性能的代表:评价与修正系数","authors":"Nicholas Bass, S. Jalui, G. Manogharan","doi":"10.1115/msec2022-85310","DOIUrl":null,"url":null,"abstract":"\n Tensile testing is the most prevalent method for characterizing the mechanical properties of additively manufactured (AM) materials. During qualification of metallic AM properties, near-net AM parts are often machined prior to mechanical testing. The aim of this study is to understand the influence of net-shaped tensile coupons without post-AM machining on the accuracy of bulk material properties. The motivation for this study lies in: (1) reducing the qualification time and costs by (2) formulating and validating a correction factor to estimate bulk AM properties from mechanical testing of as-AM coupons. This research focused on the tensile testing of Laser Powder Bed Fusion (LPBF) produced Inconel 718 to isolate the effects of as-AM surface roughness. Six different surface conditions were produced by varying two different laser processing conditions, with and without contour laser scans. Specimens (n = 5 per condition) were tested in both net-shape and post-AM machined conditions. Surface roughness was analyzed using both stylus contact profilometry and micro-computed tomography (micro-CT) non-contact analysis. ANOVA analysis was performed to derive inference on processing conditions and resulting mechanical properties. It was observed that the measurement error in gauge diameter primarily accounts for variability in mechanical properties between machined and net-shape coupons, specifically Ultimate Tensile Strength (UTS). This study presents a methodology to determine corrected gauge diameter based on depth of surface roughness. Findings from this study will enable net-shape tensile data to be compared against machined data for accurately predicting the strength of parts with as-AM surfaces. By accounting for surface roughness depth, tensile strength of net-shape AM coupons was within 1% accuracy to that of machined AM coupons.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Net-Shape Tensile Specimens as Representatives of Material Properties of Metal Additive Manufacturing: Evaluation and Correction Factor\",\"authors\":\"Nicholas Bass, S. Jalui, G. Manogharan\",\"doi\":\"10.1115/msec2022-85310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tensile testing is the most prevalent method for characterizing the mechanical properties of additively manufactured (AM) materials. During qualification of metallic AM properties, near-net AM parts are often machined prior to mechanical testing. The aim of this study is to understand the influence of net-shaped tensile coupons without post-AM machining on the accuracy of bulk material properties. The motivation for this study lies in: (1) reducing the qualification time and costs by (2) formulating and validating a correction factor to estimate bulk AM properties from mechanical testing of as-AM coupons. This research focused on the tensile testing of Laser Powder Bed Fusion (LPBF) produced Inconel 718 to isolate the effects of as-AM surface roughness. Six different surface conditions were produced by varying two different laser processing conditions, with and without contour laser scans. Specimens (n = 5 per condition) were tested in both net-shape and post-AM machined conditions. Surface roughness was analyzed using both stylus contact profilometry and micro-computed tomography (micro-CT) non-contact analysis. ANOVA analysis was performed to derive inference on processing conditions and resulting mechanical properties. It was observed that the measurement error in gauge diameter primarily accounts for variability in mechanical properties between machined and net-shape coupons, specifically Ultimate Tensile Strength (UTS). This study presents a methodology to determine corrected gauge diameter based on depth of surface roughness. Findings from this study will enable net-shape tensile data to be compared against machined data for accurately predicting the strength of parts with as-AM surfaces. By accounting for surface roughness depth, tensile strength of net-shape AM coupons was within 1% accuracy to that of machined AM coupons.\",\"PeriodicalId\":23676,\"journal\":{\"name\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拉伸试验是表征增材制造(AM)材料力学性能的最常用方法。在金属增材制造性能鉴定过程中,近净增材制造零件通常在力学测试之前进行加工。本研究的目的是了解未经增材制造后加工的网形拉伸片对块状材料性能精度的影响。本研究的动机在于:(1)通过(2)制定和验证校正因子来估计as-AM材料的机械测试的批量AM性能,从而减少鉴定时间和成本。本研究的重点是对激光粉末床熔合(LPBF)生产的Inconel 718进行拉伸测试,以隔离as-AM表面粗糙度的影响。通过改变两种不同的激光加工条件,有和没有轮廓激光扫描,产生了六种不同的表面状况。样品(每种条件n = 5)在净形和后am加工条件下进行测试。采用触笔接触轮廓术和微计算机断层扫描(micro-CT)非接触分析对表面粗糙度进行了分析。进行方差分析以得出加工条件和由此产生的机械性能的推断。结果表明,测量误差主要是由于加工和净形板之间的力学性能变化,特别是极限抗拉强度(UTS)。本研究提出了一种基于表面粗糙度深度确定校正量规直径的方法。这项研究的结果将使净形状拉伸数据与加工数据进行比较,以准确预测具有增材制造表面的零件的强度。考虑表面粗糙度深度,净形AM板的抗拉强度与加工AM板的精度在1%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Net-Shape Tensile Specimens as Representatives of Material Properties of Metal Additive Manufacturing: Evaluation and Correction Factor
Tensile testing is the most prevalent method for characterizing the mechanical properties of additively manufactured (AM) materials. During qualification of metallic AM properties, near-net AM parts are often machined prior to mechanical testing. The aim of this study is to understand the influence of net-shaped tensile coupons without post-AM machining on the accuracy of bulk material properties. The motivation for this study lies in: (1) reducing the qualification time and costs by (2) formulating and validating a correction factor to estimate bulk AM properties from mechanical testing of as-AM coupons. This research focused on the tensile testing of Laser Powder Bed Fusion (LPBF) produced Inconel 718 to isolate the effects of as-AM surface roughness. Six different surface conditions were produced by varying two different laser processing conditions, with and without contour laser scans. Specimens (n = 5 per condition) were tested in both net-shape and post-AM machined conditions. Surface roughness was analyzed using both stylus contact profilometry and micro-computed tomography (micro-CT) non-contact analysis. ANOVA analysis was performed to derive inference on processing conditions and resulting mechanical properties. It was observed that the measurement error in gauge diameter primarily accounts for variability in mechanical properties between machined and net-shape coupons, specifically Ultimate Tensile Strength (UTS). This study presents a methodology to determine corrected gauge diameter based on depth of surface roughness. Findings from this study will enable net-shape tensile data to be compared against machined data for accurately predicting the strength of parts with as-AM surfaces. By accounting for surface roughness depth, tensile strength of net-shape AM coupons was within 1% accuracy to that of machined AM coupons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信