探索创新的社交媒体学生满意度研究:满意度理论与自然语言处理技术相结合的方法

Yong-tian Yu, Guang Yu, Yueyang Zhao
{"title":"探索创新的社交媒体学生满意度研究:满意度理论与自然语言处理技术相结合的方法","authors":"Yong-tian Yu, Guang Yu, Yueyang Zhao","doi":"10.1109/ICMSE.2018.8745321","DOIUrl":null,"url":null,"abstract":"In the era of \"Big data\" and \"Web 2.0\", the viral speed of information dissemination magnified the data problem of subjectivity and timeliness in student satisfaction (SS) study. In this study, we conducted an innovative SS study based on a new data collection instrument which makes the data objective, timely, and even massive. Combining traditional Student Satisfaction Inventory (SSI) with frontier Natural Language Processing technology, we conducted the SS study based on social media. Instead of asking students to participate in, we used data mining and sentiment analysis technology to mine the existed data. Further, drawing from SSI, we proposed an SS analysis model using these collected data. To verify the validity of this method, we gave an empirical study.","PeriodicalId":6847,"journal":{"name":"2018 International Conference on Management Science and Engineering (ICMSE)","volume":"1 1","pages":"434-440"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring an Innovative Student Satisfaction Study on Social Media: A Method Combing Satisfaction Theory with Natural Language Processing Technology\",\"authors\":\"Yong-tian Yu, Guang Yu, Yueyang Zhao\",\"doi\":\"10.1109/ICMSE.2018.8745321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of \\\"Big data\\\" and \\\"Web 2.0\\\", the viral speed of information dissemination magnified the data problem of subjectivity and timeliness in student satisfaction (SS) study. In this study, we conducted an innovative SS study based on a new data collection instrument which makes the data objective, timely, and even massive. Combining traditional Student Satisfaction Inventory (SSI) with frontier Natural Language Processing technology, we conducted the SS study based on social media. Instead of asking students to participate in, we used data mining and sentiment analysis technology to mine the existed data. Further, drawing from SSI, we proposed an SS analysis model using these collected data. To verify the validity of this method, we gave an empirical study.\",\"PeriodicalId\":6847,\"journal\":{\"name\":\"2018 International Conference on Management Science and Engineering (ICMSE)\",\"volume\":\"1 1\",\"pages\":\"434-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Management Science and Engineering (ICMSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSE.2018.8745321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Management Science and Engineering (ICMSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSE.2018.8745321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在“大数据”和“Web 2.0”时代,信息的病毒式传播速度放大了学生满意度研究的数据主观性和时效性问题。在本研究中,我们基于一种新的数据收集工具进行了创新的SS研究,使数据客观、及时、甚至海量。结合传统的学生满意度量表(SSI)和前沿的自然语言处理技术,我们进行了基于社交媒体的学生满意度研究。我们没有要求学生参与,而是使用数据挖掘和情感分析技术来挖掘现有的数据。此外,借鉴SSI,我们提出了一个SS分析模型,利用这些收集到的数据。为了验证该方法的有效性,我们进行了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring an Innovative Student Satisfaction Study on Social Media: A Method Combing Satisfaction Theory with Natural Language Processing Technology
In the era of "Big data" and "Web 2.0", the viral speed of information dissemination magnified the data problem of subjectivity and timeliness in student satisfaction (SS) study. In this study, we conducted an innovative SS study based on a new data collection instrument which makes the data objective, timely, and even massive. Combining traditional Student Satisfaction Inventory (SSI) with frontier Natural Language Processing technology, we conducted the SS study based on social media. Instead of asking students to participate in, we used data mining and sentiment analysis technology to mine the existed data. Further, drawing from SSI, we proposed an SS analysis model using these collected data. To verify the validity of this method, we gave an empirical study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信