Y. Zobus, C. Brabetz, J. Hornung, J. Ohland, D. Reemts, J. Zou, M. Loeser, D. Albach, U. Schramm, V. Bagnoud
{"title":"毫焦耳超快光学参量放大器作为高增益再生放大器的替代品","authors":"Y. Zobus, C. Brabetz, J. Hornung, J. Ohland, D. Reemts, J. Zou, M. Loeser, D. Albach, U. Schramm, V. Bagnoud","doi":"10.1017/hpl.2023.30","DOIUrl":null,"url":null,"abstract":"Abstract We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of \n$4.9\\times {10}^{-13}$\n and a pre-pulse contrast of \n$6.2\\times {10}^{-11}$\n could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"17 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millijoule ultrafast optical parametric amplification as replacement for high-gain regenerative amplifiers\",\"authors\":\"Y. Zobus, C. Brabetz, J. Hornung, J. Ohland, D. Reemts, J. Zou, M. Loeser, D. Albach, U. Schramm, V. Bagnoud\",\"doi\":\"10.1017/hpl.2023.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of \\n$4.9\\\\times {10}^{-13}$\\n and a pre-pulse contrast of \\n$6.2\\\\times {10}^{-11}$\\n could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.\",\"PeriodicalId\":54285,\"journal\":{\"name\":\"High Power Laser Science and Engineering\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Power Laser Science and Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/hpl.2023.30\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.30","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Millijoule ultrafast optical parametric amplification as replacement for high-gain regenerative amplifiers
Abstract We report on the development of an ultrafast optical parametric amplifier front-end for the Petawatt High Energy Laser for heavy Ion eXperiments (PHELIX) and the Petawatt ENergy-Efficient Laser for Optical Plasma Experiments (PEnELOPE) facilities. This front-end delivers broadband and stable amplification up to 1 mJ per pulse while maintaining a high beam quality. Its implementation at PHELIX allowed one to bypass the front-end amplifier, which is known to be a source of pre-pulses. With the bypass, an amplified spontaneous emission contrast of
$4.9\times {10}^{-13}$
and a pre-pulse contrast of
$6.2\times {10}^{-11}$
could be realized. Due to its high stability, high beam quality and its versatile pump amplifier, the system offers an alternative for high-gain regenerative amplifiers in the front-end of various laser systems.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.