利用大数据预测亚马逊产品的评级

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jongwook Woo, Monika Mishra
{"title":"利用大数据预测亚马逊产品的评级","authors":"Jongwook Woo, Monika Mishra","doi":"10.1002/widm.1400","DOIUrl":null,"url":null,"abstract":"This paper aims to apply several machine learning (ML) models to the massive dataset present in the area of e‐commerce from Amazon to analyze and predict ratings and to recommend products. For this purpose, we have used both traditional and Big Data algorithms. As the Amazon product review dataset is large, we present Big Data architecture suitable massive dataset for storing and computation, which is not possible with the traditional architecture. Furthermore, the dataset contains 15 attributes and has about 7 million records. With the dataset, we develop several models in Oracle Big Data and Azure Cloud Computing services to predict the review rating and recommendation for the items at Amazon. We present a comparative conclusion in terms of the accuracy as well as the efficiency with Spark ML—the Big Data architecture, and Azure ML—the traditional architecture.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"1 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predicting the ratings of Amazon products using Big Data\",\"authors\":\"Jongwook Woo, Monika Mishra\",\"doi\":\"10.1002/widm.1400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to apply several machine learning (ML) models to the massive dataset present in the area of e‐commerce from Amazon to analyze and predict ratings and to recommend products. For this purpose, we have used both traditional and Big Data algorithms. As the Amazon product review dataset is large, we present Big Data architecture suitable massive dataset for storing and computation, which is not possible with the traditional architecture. Furthermore, the dataset contains 15 attributes and has about 7 million records. With the dataset, we develop several models in Oracle Big Data and Azure Cloud Computing services to predict the review rating and recommendation for the items at Amazon. We present a comparative conclusion in terms of the accuracy as well as the efficiency with Spark ML—the Big Data architecture, and Azure ML—the traditional architecture.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1400\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1400","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

摘要

本文旨在将几个机器学习(ML)模型应用于亚马逊电子商务领域的大量数据集,以分析和预测评级并推荐产品。为此,我们使用了传统算法和大数据算法。由于亚马逊产品评论数据量较大,我们提出了适合海量数据存储和计算的大数据架构,这是传统架构无法实现的。此外,该数据集包含15个属性,大约有700万条记录。利用这些数据集,我们在Oracle大数据和Azure云计算服务中开发了几个模型来预测亚马逊上商品的评论评级和推荐。我们对大数据架构Spark ml和传统架构Azure ml的准确率和效率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the ratings of Amazon products using Big Data
This paper aims to apply several machine learning (ML) models to the massive dataset present in the area of e‐commerce from Amazon to analyze and predict ratings and to recommend products. For this purpose, we have used both traditional and Big Data algorithms. As the Amazon product review dataset is large, we present Big Data architecture suitable massive dataset for storing and computation, which is not possible with the traditional architecture. Furthermore, the dataset contains 15 attributes and has about 7 million records. With the dataset, we develop several models in Oracle Big Data and Azure Cloud Computing services to predict the review rating and recommendation for the items at Amazon. We present a comparative conclusion in terms of the accuracy as well as the efficiency with Spark ML—the Big Data architecture, and Azure ML—the traditional architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信