{"title":"纳米粒子(n-HAp, n-TiO2)对牙科高分子复合材料热性能及生物力学分析的影响","authors":"A. A. Mohammed, Jawad K. Oleiwi, E. Al-Hassani","doi":"10.4028/www.scientific.net/NHC.33.13","DOIUrl":null,"url":null,"abstract":"Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"22 15 1","pages":"13 - 34"},"PeriodicalIF":0.4000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Nanoparticles (n-HAp, n-TiO2) on the Thermal Properties and Biomechanical Analysis of Polymeric Composite Materials for Dental Applications\",\"authors\":\"A. A. Mohammed, Jawad K. Oleiwi, E. Al-Hassani\",\"doi\":\"10.4028/www.scientific.net/NHC.33.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"22 15 1\",\"pages\":\"13 - 34\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/NHC.33.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.33.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
The Effect of Nanoparticles (n-HAp, n-TiO2) on the Thermal Properties and Biomechanical Analysis of Polymeric Composite Materials for Dental Applications
Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.