Thomas D. Ewald, Norbert Holle, Klaus-Jurgen Wolter
{"title":"回流焊接时形成的空洞","authors":"Thomas D. Ewald, Norbert Holle, Klaus-Jurgen Wolter","doi":"10.1109/ECTC.2012.6249064","DOIUrl":null,"url":null,"abstract":"In the present study the interaction between solder paste and the PCB surface finish and its impact on void formation was investigated. Therefore, a comprehensive set of tests was performed on test vehicles with different diameter of the solder powder, solder alloy composition, PCB surface finish and flux chemistry. Based on these experimental results a hypothesis of void generating mechanisms is presented characterizing the wetting process.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"32 1","pages":"1677-1683"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Void formation during reflow soldering\",\"authors\":\"Thomas D. Ewald, Norbert Holle, Klaus-Jurgen Wolter\",\"doi\":\"10.1109/ECTC.2012.6249064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study the interaction between solder paste and the PCB surface finish and its impact on void formation was investigated. Therefore, a comprehensive set of tests was performed on test vehicles with different diameter of the solder powder, solder alloy composition, PCB surface finish and flux chemistry. Based on these experimental results a hypothesis of void generating mechanisms is presented characterizing the wetting process.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":\"32 1\",\"pages\":\"1677-1683\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6249064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the present study the interaction between solder paste and the PCB surface finish and its impact on void formation was investigated. Therefore, a comprehensive set of tests was performed on test vehicles with different diameter of the solder powder, solder alloy composition, PCB surface finish and flux chemistry. Based on these experimental results a hypothesis of void generating mechanisms is presented characterizing the wetting process.