{"title":"基于改进gan的CNN结构的小伪造卫星图像检测与定位增强","authors":"M. Fouad, Eslam Mostafa, Mohamed A. Elshafey","doi":"10.26555/ijain.v6i3.548","DOIUrl":null,"url":null,"abstract":"The image forgery process can be simply defined as inserting some objects, with different sizes, in order to vanish some structures and/or scenes. Satellite images can be forged in many ways, such as copy-paste, copy-move and splicing processes. Recent approaches present a generative adversarial network (GAN) as an effective method for identifying the presence of spliced forgeries and identifying their locations with higher detection accuracy of large- and medium-sized forgeries. However, such recent approaches clearly show limited detection accuracy of small-sized forgeries. Accordingly, the localization step of such small-sized forgeries is negatively impacted. In this paper, two different approaches, for detection and localization of small-sized forgeries in satellite images, are proposed. The first approach is inspired from a recently presented GAN-based approach and is modified to an enhanced version. The experimental results manifest that the detection accuracy of the first proposed approach in noticeably increased to 86% compared to his inspiring one with 79% with respect to the small-sized forgeries. Whereas, the second proposed approach uses a different design of a CNN-based discriminator to significantly enhance the detection accuracy to 94%, using the same dataset obtained from NASA and US Geological Survey (USGS) for validation and testing. Furthermore, the results show a comparable detection accuracy in case of large- and medium-sized forgeries using the two proposed approaches compared to the competing ones.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"15 1","pages":"278-289"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detection and localization enhancement for satellite images with small forgeries using modified GAN-based CNN structure\",\"authors\":\"M. Fouad, Eslam Mostafa, Mohamed A. Elshafey\",\"doi\":\"10.26555/ijain.v6i3.548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image forgery process can be simply defined as inserting some objects, with different sizes, in order to vanish some structures and/or scenes. Satellite images can be forged in many ways, such as copy-paste, copy-move and splicing processes. Recent approaches present a generative adversarial network (GAN) as an effective method for identifying the presence of spliced forgeries and identifying their locations with higher detection accuracy of large- and medium-sized forgeries. However, such recent approaches clearly show limited detection accuracy of small-sized forgeries. Accordingly, the localization step of such small-sized forgeries is negatively impacted. In this paper, two different approaches, for detection and localization of small-sized forgeries in satellite images, are proposed. The first approach is inspired from a recently presented GAN-based approach and is modified to an enhanced version. The experimental results manifest that the detection accuracy of the first proposed approach in noticeably increased to 86% compared to his inspiring one with 79% with respect to the small-sized forgeries. Whereas, the second proposed approach uses a different design of a CNN-based discriminator to significantly enhance the detection accuracy to 94%, using the same dataset obtained from NASA and US Geological Survey (USGS) for validation and testing. Furthermore, the results show a comparable detection accuracy in case of large- and medium-sized forgeries using the two proposed approaches compared to the competing ones.\",\"PeriodicalId\":52195,\"journal\":{\"name\":\"International Journal of Advances in Intelligent Informatics\",\"volume\":\"15 1\",\"pages\":\"278-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26555/ijain.v6i3.548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v6i3.548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and localization enhancement for satellite images with small forgeries using modified GAN-based CNN structure
The image forgery process can be simply defined as inserting some objects, with different sizes, in order to vanish some structures and/or scenes. Satellite images can be forged in many ways, such as copy-paste, copy-move and splicing processes. Recent approaches present a generative adversarial network (GAN) as an effective method for identifying the presence of spliced forgeries and identifying their locations with higher detection accuracy of large- and medium-sized forgeries. However, such recent approaches clearly show limited detection accuracy of small-sized forgeries. Accordingly, the localization step of such small-sized forgeries is negatively impacted. In this paper, two different approaches, for detection and localization of small-sized forgeries in satellite images, are proposed. The first approach is inspired from a recently presented GAN-based approach and is modified to an enhanced version. The experimental results manifest that the detection accuracy of the first proposed approach in noticeably increased to 86% compared to his inspiring one with 79% with respect to the small-sized forgeries. Whereas, the second proposed approach uses a different design of a CNN-based discriminator to significantly enhance the detection accuracy to 94%, using the same dataset obtained from NASA and US Geological Survey (USGS) for validation and testing. Furthermore, the results show a comparable detection accuracy in case of large- and medium-sized forgeries using the two proposed approaches compared to the competing ones.